Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 108201    DOI: 10.1088/1674-1056/ac7556
Special Issue: SPECIAL TOPIC — Celebrating the 70th Anniversary of the Physics of Jilin University
TOPICAL REVIEW—Celebrating the 70th Anniversary of the Physics of Jilin University Prev   Next  

Near-infrared photocatalysis based on upconversion nanomaterials

Xingyuan Guo(郭星原)1, Zhe Wang(王哲)2, Shengyan Yin(尹升燕)2,†, and Weiping Qin(秦伟平)2,‡
1. College of Physics, Jilin University, Changchun 130012, China;
2. State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Abstract  As the global energy crisis and environmental pollution problems become increasingly severe, it is important to develop new energy capture and pollution management methods. Among these new technologies, photocatalysis has garnered significant interest because of its significant application prospects in harnessing pollution-free solar energy to degrade organic pollutants. From a fundamental scientific and technical perspective, improved optical frequency is a key research topic that provides a useful framework for studying the optical processes impacted by the local photonic environment. This type of study is especially pertinent because plasmonics emphasizes nonlinearity. Thus, near-infrared (NIR) catalysis has received considerable attention. In this review, we aimed to provide an integrated framework for NIR photocatalysis. We briefly introduce photocatalysis based on upconversion (UC) materials, including the efficiency of UC materials and the bination and energy transfer process between the semiconductor and UC particles as well as photoelectric response photocontrolled-delivery and photodynamic therapy based on NIR-responsive materials.
Keywords:  near infrared      photocatalysis      upconversion      semiconductor  
Received:  30 April 2022      Revised:  30 May 2022      Accepted manuscript online: 
PACS:  82.45.Vp (Semiconductor materials in electrochemistry)  
  95.85.Jq (Near infrared (0.75-3 μm))  
  82.45.Jn (Surface structure, reactivity and catalysis)  
Fund: Project supported by the Interdisciplinary Research Team of Jilin University (Grant No. 10183JXTD202002) and the National Natural Science Foundation of China (Grant Nos. 51772121 and 12174150).
Corresponding Authors:  Shengyan Yin, Weiping Qin     E-mail:  syyin@jlu.edu.cn;wpqin@jlu.edu.cn

Cite this article: 

Xingyuan Guo(郭星原), Zhe Wang(王哲), Shengyan Yin(尹升燕), and Weiping Qin(秦伟平) Near-infrared photocatalysis based on upconversion nanomaterials 2022 Chin. Phys. B 31 108201

[1] Shafiq I, Shafique S, Akhter P, Abbas G, Qurashi A and Hussain M 2021 Catal. Rev. 48 1
[2] Habisreutinger S N, Schmidt-Mende L and Stolarczyk J K 2013 Angew. Chem. Int. Ed. 52 7372
[3] Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M and Ye J 2012 Adv. Mater. 24 229
[4] Maeda K and Domen K 2010 J. Phys. Chem. Lett. 1 2655
[5] Chong M N, Jin B, Chow C W K and Saint C 2010 Water Res. 44 2997
[6] Fujishima A, Rao T N and Tryk D A 2000 J. Photochem. Photobiol. C: Photochem. Rev. 1 1
[7] Fujishima A 1972 Nature 238 37
[8] Herrmann J M 1999 Catal Today 53 115
[9] Litter M I 1999 Appl. Catal. B-Environ. 23 89
[10] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
[11] Linic S, Christopher P and Ingram D B 2011 Nat. Mater. 10 911
[12] Sudhaik A, Khan A A P, Raizada P, Nguyen V H, Le Q V, Asiri A M and Singh P 2022 Chemosphere 291 132781
[13] Zheng B Z, Zhong D N, Xie T T, Zhou J, Li W L, Ilyas A, Lu Y H, Zhou M and Deng R R 2021 Chem 7 1615
[14] Qin W P, Zhang D S, Zhao D, Wang L L and Zheng K Z 2010 Chem. Commun. 46 2304
[15] Guo X, Song W, Chen C, Di W and Qin W 2013 Phys. Chem. Chem. Phys. 15 14681
[16] Guo X, Chen C, Yin S, Song W, Shi F and Qin W 2015 J. Photochem. Photobiol. A: Chem. 297 14
[17] Tang Y N, Di W H, Zhai X S, Yang R Y and Qin W P 2013 ACS Catal. 3 405
[18] Guo X, Di W, Chen C, Liu C, Wang X and Qin W 2014 Dalton T. 43 1048
[19] Guo X Y, Chen C F, Zhang D Q, Tripp C P, Yin S Y and Qin W P 2016 RSC Adv. 6 8127
[20] Park Y I, Lee K T, Suh Y D and Hyeon T 2015 Chem. Soc. Rev. 44 1302
[21] Prodi L, Rampazzo E, Rastrelli F, Speghini A and Zaccheroni N 2015 Chem. Soc. Rev. 44 4922
[22] Sedlmeier A and Gorris H H 2015 Chem. Soc. Rev. 44 1526
[23] Wolfbeis O S 2015 Chem. Soc. Rev. 44 4743
[24] Yang D M, Ma P A, Hou Z Y, Cheng Z Y, Li C X and Lin J 2015 Chem. Soc. Rev. 44 1416
[25] Zheng W, Huang P, Tu D T, Ma E, Zhu H M and Chen X Y 2015 Chem. Soc. Rev. 44 1379
[26] Bei L, Xi J L, Xiao N L, YiPin W and Bin Z 2020 Acta Phys. Sin. 69 147801 (in Chinese)
[27] Auzel F 2004 Chem. Rev. 104 139
[28] Auzel F 1976 J. Lumin. 12—13 715
[29] Wang Z, Li X, Yin S, Guo X and Qin W 2022 Funct. Mater. Lett. 15 2251013
[30] Auzel F 1990 J. Lumin. 45 341
[31] Dexter D L 1957 Phys. Rev. 108 630
[32] Qin W P, Liu Z Y, Sin C N, Wu C F, Qin G S, Chen Z and Zheng K Z 2014 Light: Sci. Appl. 3 e193
[33] Aidilibike T, Guo J, Wang L, Liu X, Li Y and Qin W 2017 RSC Adv. 7 2676
[34] Sin C, Aidilibike T, Qin W P and Yu C J 2018 J. Lumin. 194 72
[35] Chivian J S, Case W E and Eden D D 1979 Appl. Phys. Lett. 35 124
[36] Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X and Liu X 2011 Nat. Mater. 10 968
[37] Su Q Q, Han S Y, Xie X J, Zhu H M, Chen H Y, Chen C K, Liu R S, Chen X Y, Wang F and Liu X G 2012 J. Am. Chem. Soc. 134 20849
[38] Gui L C, Jia J M, Jia S S, Jin S Z, Xiang P L, Sai X, Xi Z Z, Li H C and Bao J C 2022 Acta Phys. Sin. 71 163301 (in Chinese)
[39] Wei G, Ze Y S, Li C G, Shan S H, Bin H C, Qing Y H, Xue W Y, Yong K W, Ji H L and Jun D 2022 Acta Phys. Sin. 71 034207 (in Chinese)
[40] Yong J M, Hong L, Jian W T and Xue W C 2022 Acta Phys. Sin. 71 027801 (in Chinese)
[41] Shi F, Wang J S, Zhang D S, Qin G S and Qin W P 2011 J. Mater. Chem. 21 13413
[42] Shi F, Wang J S, Zhai X S, Zhao D and Qin W P 2011 Crystengcomm 13 3782
[43] Jackson S D 2004 Opt. Commun. 230 197
[44] Wang G F, Qin W P, Wang L L, Wei G D, Zhu P F and Kim R J 2008 Opt. Express. 16 11907
[45] Park T R 2010 Solid. State Commun. 150 1378
[46] Zhao J B, Jin D Y, Schartner E P, Lu Y Q, Liu Y J, Zvyagin A V, Zhang L X, Dawes J M, Xi P, Piper J A, et al. 2013 Nat. Nanotechnol. 8 729
[47] Tu L P, Liu X M, Wu F and Zhang H 2015 Chem. Soc. Rev. 44 1331
[48] Suyver J F, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Krämer K W, Reinhard C and Güdel H U 2005 Opt. Mater. 27 1111
[49] You W, Tu D, Zheng W, Huang P and Chen X 2018 J. Lumin. 201 255
[50] Tu D, Liu Y, Zhu H, Li R, Liu L and Chen X 2013 Angew. Chem. Int. Ed. 52 1128
[51] Aebischer A, Hostettler M, Hauser J, Krämer K, Weber T, Güdel H U and Bürgi H B 2006 Angew. Chem. Int. Ed. 45 2802
[52] Debasu M L, Riedl J C, Rocha J and Carlos L D 2018 Nanoscale 10 15799
[53] Zhang X, Zhao Z, Zhang X, Cordes DB, Weeks B, Qiu B, Madanan K, Sardar D and Chaudhuri J 2015 Nano Res. 8 636
[54] Zhang W Y, Thapa S, Sun Y, Norville S, Zhu H Y, Zhu P F, Wang G F and Qin W P 2021 Chem. Eng. J. 423 130186
[55] Liu S H, Zhang P, Li D G, Lan M, Wang Z, Qin W P, Zhao D and Wang L L 2016 J. Nanosci. Nanotechno. 16 3883
[56] Li D G, Qin W P, Zhang P, Wang L L, Lan M and Shi P B 2017 Opt. Mater. Express 7 329
[57] Zeng L, Song M, Chen D, Zhou H, Liu Y, Zeng J, Liu G, Jian J, Yuan Z, Li Z, et al. 2019 Ceram. Int. 45 19730
[58] Wang F, Wang J and Liu X 2010 Angew. Chem. Int. Ed. 49 7456
[59] Zhuang Y, Chen D, Chen W, Zhang W, Su X, Deng R, An Z, Chen H and Xie R J 2021 Light: Sci. Appl. 10 132
[60] Johnson N J J, Korinek A, Dong C H and van Veggel F 2012 J. Am. Chem. Soc. 134 11068
[61] Aberle A G 2000 Prog. Photovoltaics: Res. Appl. 8 473
[62] Wang F, Deng R and Liu X 2014 Nat. Protocols. 9 1634
[63] Li X, Shen D, Yang J, Yao C, Che R, Zhang F and Zhao D 2013 Chem. Mater. 25 106
[64] Wang Y F, Sun L D, Xiao J W, Feng W, Zhou J C, Shen J and Yan C H 2012 Chem. Eur. J. 18 5558
[65] Bao G, Wen S, Wang W, Zhou J, Zha S, Liu Y, Wong K L and Jin D 2021 Nano Lett. 21 9862
[66] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[67] Dong L, Zhang C Y, Yan L, Zhang B B, Chen H, Mi X H, Fu Z K, Zhang Z L and Zheng H 2021 Chin. Phys. B 30 77301
[68] Pendry J B, Martín M L and Garcia V F J 2004 Science 305 847
[69] Jiang T, Liu Y, Liu S S, Liu N and Qin W P 2012 J. Colloid. Interf. Sci. 377 81
[70] Liu N, Qin W P, Qin G S, Jiang T and Zhao D 2011 Chem. Commun. 47 7671
[71] Manashirov O Y, Georgobiani A N, Gutan V B, Zvereva E M and Lobanov A N 2011 Inorg. Mater. 47 1006
[72] Lu Y, Wang Y and Zhang J 2021 J. Phys. D: Appl. Phys. 54 313002
[73] Tian J, Sang Y, Yu G, Jiang H, Mu X and Liu H 2013 Adv. Mater. 25 5075
[74] Huang Y, Jian Y, Li L, Li D, Fang Z, Dong W, Lu Y, Luo B, Chen R, Yang Y, et al. 2021 Angew. Chem. Int. Ed. 60 5245
[75] Wang J, Fang X C, Liu Y, Fu S L, Zhuo M P, Yao M D, Wang Z S, Chen W F, Liao L S 2021 J. Mater. Chem. C 9 829
[76] Sang Y, Zhao Z, Zhao M, Hao P, Leng Y and Liu H 2015 Adv. Mater. 27 363
[77] Wang G, Huang B, Ma X, Wang Z, Qin X, Zhang X, Dai Y and Whangbo M H 2013 Angew. Chem. Int. Ed. 52 4810
[78] Wang Y, Chen D, Zhang J, Balogun M S, Wang P, Tong Y and Huang Y 2022 Adv. Funct. Mater. 32 2112738
[79] Obregon S, Lee S W and Colon G 2014 Dalton T. 43 311
[80] Obregon S and Colon G 2014 Appl. Catal. B Environ. 152—153 328
[81] Xu F, Sun Y, Gao H P, Jin S Y, Zhang Z L, Zhang H F, Pan G C, Kang M, Ma X Q and Mao Y L 2021 ACS Appl. Mater. Inter. 13 2674
[82] Richards B S, Hudry D, Busko D, Turshatov A and Howard I A 2021 Chem. Rev. 121 9165
[83] Pan G, Bai X, Yang D, Chen X, Jing P, Qu S, Zhang L, Zhou D, Zhu J, Xu W, et al. 2017 Nano Lett. 17 8005
[84] Zhao J J, Xu J W, Jian X X, Xu J, Gao Z D and Song Y Y 2020 ACS Appl. Mater. Inter. 12 23606
[85] Huang Y, Qiu F, Chen R J, Yan D Y and Zhu X Y 2020 J. Mater. Chem. B 8 3772
[86] Guo X Y, Chen C F, Song W Y, Wang X, Di W H and Qin W P 2014 J. Mol. Catal. A-Chem. 387 1
[87] Ullah S, Ferreira-Neto E P, Hazra C, Parveen R, Rojas-Mantilla H D, Calegaro M L, Serge-Correales Y E, Rodrigues U P and Ribeiro S J L 2019 Appl. Catal. B-Environ. 243 121
[88] Wang C, Du P, Luo L H, Tian Y and Li W P 2021 Ind. Eng. Chem. Res. 60 16245
[89] Yu M S, Lv X Y, Idris A M, Li S H, Lin J Q, Lin H, Wang J and Li Z Q 2022 J. Colloid. Interf. Sci. 612 782
[90] Bonet-Aleta J, Garcia-Peiro J I and Hueso J L 2022 Catalysts 12 167
[91] Yang L, Shi R P, Zhao R X, Zhu Y L, Liu B, Gai S L and Feng L L 2022 ACS Appl. Mater. Interfaces 14 2650
[92] Pedrini J and Monguzzi A 2017 J. Photon. Energy 8 022005
[93] Wang H Q, Batentschuk M, Osvet A, Pinna L and Brabec C J 2011 Adv. Mater. 23 2675
[94] Rühle S 2016 Sol. Energy 130 139
[95] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[96] Wang R, Huang T Y, Xue J J, Tong J H, Zhu K and Yang Y 2021 Nat. Photonics 15 411
[97] Kim Y H, Kim S, Kakekhani A, Park J, Park J, Lee Y H, Xu H X, Nagane S, Wexler R B, Kim D H, et al. 2021 Nat. Photon. 15 148
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[5] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[6] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[7] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[8] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[9] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[10] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[11] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[12] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[13] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
No Suggested Reading articles found!