Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097306    DOI: 10.1088/1674-1056/ac754a
RAPID COMMUNICATION Prev   Next  

On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal

Bingyan Jiang(江丙炎)1, Jiaji Zhao(赵嘉佶)1, Lujunyu Wang(王陆君瑜)1, Ran Bi(毕然)1, Juewen Fan(范珏雯)1, Zhilin Li(李治林)2, and Xiaosong Wu(吴孝松)1,3,†
1 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  The Onsager-Casimir reciprocal relations are a fundamental symmetry of nonequilibrium statistical systems. Here we study an unusual chirality-dependent Hall effect in a tilted Weyl semimetal Co3Sn2S2 with broken time-reversal symmetry. It is confirmed that the reciprocal relations are satisfied. Since two Berry curvature effects, an anomalous velocity and a chiral chemical potential, contribute to the observed Hall effect, the reciprocal relations suggest their intriguing connection.
Keywords:  Onsager-Casimir relations      tilted Weyl semimetal      chirality-dependent Hall effect  
Received:  07 May 2022      Revised:  30 May 2022      Accepted manuscript online:  02 June 2022
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  85.30.Fg (Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))  
Fund: We are grateful for discussions with J. Feng, J. R. Shi and H. Z. Lu. Project supported by the National Key Basic Research Program of China (Grant No. 2020YFA0308800) and the National Natural Science Foundation of China (Grant Nos. 11774009 and 12074009), the Natural Science Foundation of Beijing (Grant No. Z200008), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021008).
Corresponding Authors:  Xiaosong Wu     E-mail:  xswu@pku.edu.cn

Cite this article: 

Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松) On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal 2022 Chin. Phys. B 31 097306

[1] Onsager L 1931 Phys. Rev. 37 405
[2] Onsager L 1931 Phys. Rev. 38 2265
[3] Jacquod P, Whitney R S, Meair J and Büttiker M 2012 Phys. Rev. B 86 155118
[4] Zyuzin V A 2017 Phys. Rev. B 95 245128
[5] Sharma G, Goswami P and Tewari S 2017 Phys. Rev. B 96 045112
[6] Wei Y W, Li C K, Qi J and Feng J 2018 Phys. Rev. B 97 205131
[7] Ma D, Jiang H, Liu H and Xie X C 2019 Phys. Rev. B 99 115121
[8] Das K and Agarwal A 2019 Phys. Rev. B 99 085405
[9] Johansson A, Henk J and Mertig I 2019 Phys. Rev. B 99 075114
[10] Kundu A, Siu Z B, Yang H and Jalil M B A 2020 New J. Phys. 22 083081
[11] Jiang B, Wang L, Bi R, Fan J, Zhao J, Yu D, Li Z and Wu X 2021 Phys. Rev. Lett. 126 236601
[12] Yang H, You W, Wang J, Huang J, Xi C, Xu X, Cao C, Tian M, Xu Z A, Dai J and Li Y 2020 Phys. Rev. Materials 4 024202
[13] Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S and Lei H 2018 Nat. Commun. 9 3681
[14] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[15] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282
[16] Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286
[17] Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y and Felser C 2019 Adv. Mater. 31 1806622
[18] Shen J, Zeng Q, Zhang S, Tong W, Ling L, Xi C, Wang Z, Liu E, Wang W, Wu G and Shen B 2019 Appl. Phys. Lett. 115 212403
[19] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H and Hasan M Z 2019 Nat. Phys. 15 443
[20] Geishendorf K, Schlitz R, Vir P, Shekhar C, Felser C, Nielsch K, Goennenwein S T B and Thomas A 2019 Appl. Phys. Lett. 114 092403
[21] Yang S Y, Noky J, Gayles J, Dejene F K, Sun Y, Dorr M, Skourski Y, Felser C, Ali M N, Liu E and Parkin S S P 2020 Nano Lett. 20 7860
[22] Tanaka M, Fujishiro Y, Mogi M, Kaneko Y, Yokosawa T, Kanazawa N, Minami S, Koretsune T, Arita R, Tarucha S, Yamamoto M and Tokura Y 2020 Nano Lett. 20 7476
[23] Shama, Gopal R K and Singh Y 2020 J. Magn. Magn. Mater. 502 166547
[24] Lachman E, Murphy R A, Maksimovic N, Kealhofer R, Haley S, McDonald R D, Long J R and Analytis J G 2020 Nat. Commun. 11 560
[25] Shen J, Yao Q, Zeng Q, Sun H, Xi X, Wu G, Wang W, Shen B, Liu Q and Liu E 2020 Phys. Rev. Lett. 125 086602
[26] Xu Y, Zhao J, Yi C, Wang Q, Yin Q, Wang Y, Hu X, Wang L, Liu E, Xu G, Lu L, Soluyanov A A, Lei H, Shi Y, Luo J and Chen Z G 2020 Nat. Commun. 11 3985
[27] Geishendorf K, Vir P, Shekhar C, Felser C, Facio J I, van den Brink J, Nielsch K, Thomas A and Goennenwein S T B 2020 Nano Lett. 20 300
[28] Ding L, Koo J, Yi C, Xu L, Zuo H, Yang M, Shi Y, Yan B, Behnia K and Zhu Z 2021 J. Phys. D:Appl. Phys. 54 454003
[29] Howard S, Jiao L, Wang Z, Morali N, Batabyal R, Kumar-Nag P, Avraham N, Beidenkopf H, Vir P, Liu E, Shekhar C, Felser C, Hughes T and Madhavan V 2021 Nat. Commun. 12 4269
[30] Zhang Q, Okamoto S, Samolyuk G D, Stone M B, Kolesnikov A I, Xue R, Yan J, McGuire M A, Mandrus D and Tennant D A 2021 Phys. Rev. Lett. 127 117201
[31] Büttiker M 1986 Phys. Rev. Lett. 57 1761
[32] Büttiker M 1988 IBM J. Res. Dev. 32 317
[33] Casimir H B G 1945 Rev. Mod. Phys. 17 343
[34] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[35] Xiao D, Shi J and Niu Q 2005 Phys. Rev. Lett. 95 137204
[36] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[1] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[2] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[3] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[4] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[5] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[6] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[7] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[8] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[9] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[10] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[11] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[12] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[13] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
[14] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[15] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
No Suggested Reading articles found!