Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 118102    DOI: 10.1088/1674-1056/ac7298
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD

Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林)
School of Electronic Science&Engineering, Nanjing University, Nanjing 210046, China
Abstract  This work proposed to change the structure of the sample susceptor of the microwave plasma chemical vapor deposition (MPCVD) reaction chamber, that is, to introduce a small hole in the center of the susceptor to study its suppression effect on the incorporation of residual nitrogen in the MPCVD diamond film. By using COMSOL multiphysics software simulation, the plasma characteristics and the concentration of chemical reactants in the cylindrical cavity of MPCVD system were studied, including electric field intensity, electron number density, electron temperature, the concentrations of atomic hydrogen, methyl, and nitrogenous substances, etc. After introducing a small hole in the center of the molybdenum support susceptor, we found that no significant changes were found in the center area of the plasma, but the electron state in the plasma changed greatly on the surface above the susceptor. The electron number density was reduced by about 40%, while the electron temperature was reduced by about 0.02 eV, and the concentration of atomic nitrogen was decreased by about an order of magnitude. Moreover, we found that if a specific lower microwave input power is used, and a susceptor structure without the small hole is introduced, the change results similar to those in the surface area of the susceptor will be obtained, but the spatial distribution of electromagnetic field and reactant concentration will be changed.
Keywords:  plasma simulation      diamond      microwave plasma chemical vapor deposition (MPCVD)      residual nitrogen  
Received:  29 April 2022      Revised:  20 May 2022      Accepted manuscript online:  24 May 2022
PACS:  81.05.ug (Diamond)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: The authors acknowledged financial support from the National Natural Science Foundation of China (Grant Nos. 61974059, 61674077, and 61774081) and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Kun Tang, Shulin Gu     E-mail:  ktang@nju.edu.cn;slgu@nju.edu.cn

Cite this article: 

Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林) Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD 2022 Chin. Phys. B 31 118102

[1] Locher R, Wagner J, Fuchs F, Wild C, Hiesinger P, Gonon P and Koidl P 1995 Mater. Sci. Eng. B 29 211
[2] Ashfold M, Goss J P, Green B L, May P W, Newton M E and Peaker C V 2020 Chem. Rev. 120 5745
[3] Tallaire A, Lesik M, Jacques V, Pezzagna S, Mille V, Brinza O, Meijer J, Abel B, Roch J F, Gicquel A and Achard J 2015 Diamond. Relat. Mater. 51 55
[4] Bolshakov A P, Ralchenko V G, Shu G Y, Dai B, Yurov V Y, Bushuev E V, Khomich A A, Altakhov A S, Ashkinazi E E, Antonova I A, Vlasov A V, Voronov V V, Sizov Y Y, Vartapetov S K, Konov V I and Zhu J 2020 Mater. Today Commun. 25 101635
[5] Matsumoto T, Mukose T, Makino T, Takeuchi D, Yamasaki S, Inokuma T and Tokuda N 2017 Diamond. Relat. Mater. 75 152
[6] Achard J, Silva F, Brinza O, Tallaire A and Gicquel A 2007 Diamond. Relat. Mater. 16 685
[7] Nistor S V, Stefan M, Ralchenko V, Khomich A and Schoemaker D 2000 J. Appl. Phys. 87 8741
[8] Tan W and Grotjohn T A 1995 Diamond. Relat. Mater. 4 1145
[9] Goeden C and Dollinger G 2002 Appl. Phys. Lett. 81 5027
[10] Phelps A V and Pitchford L C 1985 Phys. Rev. A 31 2932
[11] Campbell L, Brunger M J, Nolan A M, Kelly L J, Wedding A B, Harrison J and McLaughlin B 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1185
[12] Truscott B S, Kelly M W, Potter K J, Johnson M, Ashfold M N and Mankelevich Y A 2015 J. Phys. Chem. A. 119 12962
[13] Hayashi M 1987 Swarm studies and inelastic electron-molecule collisions (New York, NY: Springer) pp. 167-187
[14] Fedus K 2014 Brazilian J. Phys. 44 622
[15] Frenklach M and Wang H 1991 Phys. Rev. B. 43 1520
[16] Huang D 2014 Numerical simulation of hydrogen plasma in MPCVD reactor (Ph.D. dissertation) (West Lafayette: Purdue University)
[17] Vikharev A L, Lobaev M A, Gorbachev A M, Radishev D B, Isaev V A and Bogdanov S A 2020 Mater. Today Commun. 22 100816
[18] Yamada H 2012 Jpn. J. Appl. Phys. 51 090105
[19] Ashkinazi E E, Khmelnitskii R A, Sedov V S, Khomich A A, Khomich A V and Ralchenko V G 2017 Crystals. 7 166
[20] Truscott B S, Kelly M W, Potter K J, Ashfold M N and Mankelevich Y A 2016 J. Phys. Chem. A 120 8537
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[6] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[7] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[10] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[11] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[12] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[13] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[14] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[15] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
No Suggested Reading articles found!