Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 100303    DOI: 10.1088/1674-1056/ac7295
GENERAL Prev   Next  

Quantum correlation and entropic uncertainty in a quantum-dot system

Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋)
School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
Abstract  We explore the dynamical behaviors of the measurement uncertainty and quantum correlation for a vertical quantum-dot system in the presence of magnetic field, including electron-electron interaction and Coulomb-blocked systems. Stemming from the quantum-memory-assisted entropic uncertainty relation, the uncertainty of interest is associated with temperature and parameters related to the magnetic field. Interestingly, the temperature has two kinds of influences on the variation of measurement uncertainty with respect to the magnetic-field-related parameters. We also discuss the relation between the lower bound of Berta et al. and the quantum discord. It is found that there is a natural competition between the quantum discord and the entropy minΠiBSΠiB(ρA|B). Finally, we bring in two improved bounds to offer a more precise limit to the entropic uncertainty.
Keywords:  entropic uncertainty relation      quantum correlation      quantum dot  
Received:  15 March 2022      Revised:  23 May 2022      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075001, 61601002, and 12175001), the Anhui Provincial Key Research and Development Plan (Grant No. 2022b13020004), the Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139), and the Fund of CAS Key Laboratory of Quantum Information (Grant No. KQI201701).
Corresponding Authors:  Dong Wang     E-mail:

Cite this article: 

Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋) Quantum correlation and entropic uncertainty in a quantum-dot system 2022 Chin. Phys. B 31 100303

[1] Heisenberg W 1927 Z. Phys. 43 172
[2] Kennard E H 1927 Z. Phys. 44 326
[3] Robertson H P 1929 Phys. Rev. 34 163
[4] Wang K K, Zhan X, Bian Z H, Li J, Zhang Y S and Xue P 2016 Phys. Rev. A 93 052108
[5] Maccone L and Pati A K 2014 Phys. Rev. Lett. 113 260401
[6] Deutsch D 1983 Phys. Rev. Lett. 50 631
[7] Kraus K 1987 Phys. Rev. D 35 3070
[8] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
[9] Renes J M and Boilea J C 2009 Phys. Rev. Lett. 103 020402
[10] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
[11] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752
[12] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757
[13] Dolatkhah H, Haseli S, Salimi S and Khorashad A S 2019 Quantum Inf. Process. 18 13
[14] Zhang Z Y and Liu J M 2022 Physica A 589 126639
[15] Jiang T Y, Fang Y Y, Li Y H, Xu X Y and Liu J M 2022 Ann. Phys. (Berlin) 534 2100352
[16] Li L J, Ming F, Song X K, Ye L and Wang D 2022 Acta Phys. Sin. 71 070302 (in Chinese)
[17] Konig R, Wehner S and Wullschleger J 2012 IEEE Trans. Inf. Theory 58 1962
[18] Dupuis F, Fawzi O and Wehner S 2015 IEEE Trans. Inf. Theory 61 1093
[19] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[20] N J Cerf, M Bourennane, A Karlsson and Gisin N 2002 Phys. Rev. Lett. 88 127902
[21] Koashi M 2009 New J. Phys. 11 045018
[22] Grosshans F and Cerf N J 2004 Phys. Rev. Lett. 92 047905
[23] Ming F, Wang D, Fan X G, Shi W N, Ye L and Chen J L 2020 Phys. Rev. A 102 012206
[24] Hall M J W and Wiseman H M 2012 New J. Phys. 14 033040
[25] Yu C S 2017 Phys. Rev. A 95 042337
[26] Jarzyna M and Demkowicz-Dobrzański R 2015 New J. Phys. 17 013010
[27] Hu M L and Fan H 2013 Phys. Rev. A 88 014105
[28] Rodriguez E B and Aguilar L M A 2018 Sci. Rep. 8 4010
[29] Wang D, Shi W N, Hoehn R D, Ming F, Sun W Y, Kais S and Ye L 2018 Ann. Phys. (Berlin) 530 1800080
[30] Yang Y Y, Sun W Y, Shi W N, Ming F, Wang D and Ye L 2019 Front. Phys. 14 31601
[31] Xie B F, Ming F, Wang D, L Ye and Chen J L 2021 Phys. Rev. A 104 062204
[32] Li L J, Ming F, Song X K, Ye L and Wang D 2021 Eur. Phys. J. C 81 728
[33] Li L J, Ming F, Shi W N, Ye L and Wang D 2021 Physica E 133 114802
[34] Berrada K 2020 Physica E 116 113784
[35] Chotorlishvili L, Gudyma A, Waetzel J, Ernst A and Berakdar J 2019 Phys. Rev. B 100 174413
[36] Lee B, Pursley B C, Carter S G, Economou S E, Yakes M K, Grim J Q, Bracker A S and Gammon D 2019 Phys. Rev. B 100 125438
[37] M Pustilnik and Glazman L I 2000 Phys. Rev. Lett. 85 2993
[38] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[39] Luo S L 2008 Phys. Rev. A 77 042303
[40] Sun K, Ye X J, Xu J S, Xu X Y, Tang J S, Wu Y C, Chen J L, Li C F and Guo G C 2016 Phys. Rev. Lett. 116 160404
[41] Wang D, Ming F, Hu M L and Ye L 2019 Ann. Phys. (Berlin) 531 1900124
[42] Pati A K, Wilde M M, Usha Devi A R, Rajagopal A K and Sudha 2012 Phys. Rev. A 86 042105
[43] Adabi F, Salimi S and Haseli S 2016 Phys. Rev. A 93 062123
[44] Hu M L, Zhang Y H and Fan H 2021 Chin. Phys. B 30 030308
[45] Hu M L and Fan H 2020 Sci. China-Phys. Mech. Astron. 63 230322
[46] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[1] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[2] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名), and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[3] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[4] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[5] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[6] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[7] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[8] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[11] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[12] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[13] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[14] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[15] Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling
Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超). Chin. Phys. B, 2021, 30(8): 080501.
No Suggested Reading articles found!