Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087401    DOI: 10.1088/1674-1056/ac7214
RAPID COMMUNICATION Prev   Next  

Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor

Hongtao Yan(闫宏涛)1,2, Qiang Gao(高强)1, Chunyao Song(宋春尧)1,2, Chaohui Yin(殷超辉)1,2, Yiwen Chen(陈逸雯)1,2, Fengfeng Zhang(张丰丰)3, Feng Yang(杨峰)3, Shenjin Zhang(张申金)3, Qinjun Peng(彭钦军)3, Guodong Liu(刘国东)1,2,4, Lin Zhao(赵林)1,2,4, Zuyan Xu(许祖彦)3, and X. J. Zhou(周兴江)1,2,4,5,†
1 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  The pseudogap state is one of the most enigmatic characteristics in the anomalous normal state properties of the high temperature cuprate superconductors. A central issue is to reveal whether there is a symmetry breaking and which symmetries are broken across the pseudogap transition. By performing high resolution laser-based angle-resolved photoemission measurements on the optimally-doped Bi2Sr1.6La0.4CuO6+δ superconductor, we report the observations of the particle-hole symmetry conservation in both the superconducting state and the pseudogap state along the entire Fermi surface. These results provide key insights in understanding the nature of the pseudogap and its relation with high temperature superconductivity.
Keywords:  pseudogap      symmetry breaking      ARPES  
Received:  17 May 2022      Revised:  17 May 2022      Accepted manuscript online:  23 May 2022
PACS:  74.25.-q (Properties of superconductors)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.72.-h (Cuprate superconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11888101, 11922414 and 11974404), the National Key Research and Development Program of China (Grant Nos. 2021YFA1401800, 2017YFA0302900, 2018YFA0305602, and 2018YFA0704200), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB33000000), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021006), the Synergetic Extreme Condition User Facility (SECUF) and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G06).
Corresponding Authors:  X. J. Zhou     E-mail:  XJZhou@iphy.ac.cn

Cite this article: 

Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江) Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor 2022 Chin. Phys. B 31 087401

[1] Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[2] Loeser A G, Shen Z X, Dessau D S, Marshall D S, Park C H, Fournier P and Kapitulnik A 1996 Science 273 325
[3] Ding H, Yokoya T, Campuzano J C, Takahashi T, Randeria M, Norman M R, Mochiku T, Kadowaki K and Giapintzakis J 1996 Nature 382 51
[4] Emery V J and Kivelson S A 1995 Nature 374 434
[5] Kampf A and Schrieffer J R 1990 Phys. Rev. B 41 6399
[6] Chakravarty S, Laughlin R B, Morr D K and Nayak C 2001 Phys. Rev. B 63 094503
[7] Li J X, Wu C Q and Lee D H 2006 Phys. Rev. B 74 184515
[8] Hashimoto M, He R H, Tanaka K, Testaud J P, Meevasana W, Moore R G, Lu D H, Yao H, Yoshida Y, Eisaki H, Devereaux T P, Hussain Z and Shen Z X 2010 Nat. Phys. 6 414
[9] He R H, Hashimoto M, Karapetyan H, Koralek J D, Hinton J P, Testaud J P, Nathan V, Yoshida Y, Yao H, Tanaka K, Meevasana W, Moore R G, Lu D H, Mo S K, Ishikado M, Eisaki H, Hussain Z, Devereaux T P, Kivelson S A, Orenstein J, Kapitulnik A and Shen Z X 2011 Science 331 1579
[10] Lee P A 2014 Phys. Rev. X 4 031017
[11] Chen S D, Hashimoto M, He Y, Song D, Xu K J, He J F, Devereaux T P, Eisaki H, Lu D H, Zaanen J and Shen Z X 2019 Science 366 1099
[12] Yang H B, Rameau J D, Johnson P D, Valla T, Tsvelik A and Gu G D 2008 Nature 456 77
[13] Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Wang X Y, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
[14] Zhou X J, He S L, Liu G D, Zhao L, Yu L and Zhang W T 2018 Rep. Prog. Phys. 81 062101
[15] Meng J Q, Liu G D, Zhang W T, Zhao L, Liu H Y, Lu W, Dong X L and Zhou X J 2009 Supercond. Sci. Tech. 22 045010
[16] Zheng G Q, Kuhns P L, Reyes A P, Liang B and Lin C T 2005 Phys. Rev. Lett. 94 047006
[17] Ma J H, Pan Z H, Niestemski F C, Neupane M, Xu Y M, Richard P, Nakayama K, Sato T, Takahashi T, Luo H Q, Fang L, Wen H H, Wang Z Q, Ding H and Madhavan V 2008 Phys. Rev. Lett. 101 207002
[18] Aebi P, Osterwalder J, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1994 Phys. Rev. Lett. 72 2757
[19] Ding H, Campuzano J C, Bellman A F, Yokoya T, Norman M R, Randeria M, Takahashi T, Yoshida H K, Mochiku T, Kadowaki K and Jennings G 1995 Phys. Rev. Lett. 74 2784
[20] Osterwalder J, Aebi P, Schwaller P, Schlapbach L, Shimoda M, Mochiku T and Kadowaki K 1995 Appl. Phys. A 60 247
[21] Liu J, Zhao L, Gao Q, Ai P, Zhang L, Xie T, Huang J W, Ding Y, Hu C, Yan H T, Song C Y, Xu Y, Li C, Cai Y Q, Rong H T, Wu D S, Liu G D, Wang Q Y, Huang Y, Zhang F F, Yang F, Peng Q J, Li S L, Yang H X, Li J Q, Xu Z Y and Zhou X J 2019 Chin. Phys. B 28 077403
[22] Gao Q, Yan H T, Liu J, Ai P, Cai Y Q, Li C, Luo X Y, Hu C, Song C Y, Huang J W, Rong H T, Huang Y, Wang Q Y, Liu G D, Gu G D, Zhang F F, Yang F, Zhang S J, Peng Q J, Xu Z Y, Zhao L, Xiang T and Zhou X J 2020 Phys. Rev. B 101 014513
[23] Sun X, Zhang W T, Zhao L, Liu G D, Gu G D, Peng Q J, Wang Z M, Zhang S J, Yang F, Chen C T, Xu Z Y and Zhou X J 2018 Chin. Phys. Lett. 35 017401
[24] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[1] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[2] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[3] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[4] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[5] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[6] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[7] Unusual electronic structure of Dirac material BaMnSb2 revealed by angle-resolved photoemission spectroscopy
Hongtao Rong(戎洪涛), Liqin Zhou(周丽琴), Junbao He(何俊宝), Chunyao Song(宋春尧), Yu Xu(徐煜), Yongqing Cai(蔡永青), Cong Li(李聪), Qingyan Wang(王庆艳), Lin Zhao(赵林), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Genfu Chen(陈根富), Hongming Weng(翁红明), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2021, 30(6): 067403.
[8] A short review of the recent progresses in the study of the cuprate superconductivity
Tao Li(李涛). Chin. Phys. B, 2021, 30(10): 100508.
[9] Existence of spontaneous symmetry breaking in two-lane totally asymmetric simple exclusion processes with an intersection
Bo Tian(田波), Ping Xia(夏萍), Li Liu(刘莉), Meng-Ran Wu(吴蒙然), Shu-Yong Guo(郭树勇). Chin. Phys. B, 2020, 29(5): 050505.
[10] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
[11] Josephson effect in the strontium titanate/lanthanum aluminate junction
Xing Yang(阳星), Jie Chen(陈杰), Yabin Yu(余亚斌), Quanhui Liu(刘全慧). Chin. Phys. B, 2019, 28(9): 097401.
[12] Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2-xPbx)Sr2CaCu2O8+δ superconductors
Jing Liu(刘静), Lin Zhao(赵林), Qiang Gao(高强), Ping Ai(艾平), Lu Zhang(张璐), Tao Xie(谢涛), Jian-Wei Huang(黄建伟), Ying Ding(丁颖), Cheng Hu(胡成), Hong-Tao Yan(闫洪涛), Chun-Yao Song(宋春尧), Yu Xu(徐煜), Cong Li(李聪), Yong-Qing Cai(蔡永青), Hong-Tao Rong(戎洪涛), Ding-Song Wu(吴定松), Guo-Dong Liu(刘国东), Qing-Yan Wang(王庆艳), Yuan Huang(黄元), Feng-Feng Zhang(张丰丰), Feng Yang(杨峰), Qin-Jun Peng(彭钦军), Shi-Liang Li(李世亮), Huai-Xin Yang(杨槐馨), Jian-Qi Li(李建奇), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2019, 28(7): 077403.
[13] Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors
Bin-Bin Fu(付彬彬), Chang-Jiang Yi(伊长江), Zhi-Jun Wang(王志俊), Meng Yang(杨萌), Bai-Qing Lv(吕佰晴), Xin Gao(高鑫), Man Li(李满), Yao-Bo Huang(黄耀波), Hong-Ming Weng(翁红明), You-Guo Shi(石友国), Tian Qian(钱天), Hong Ding(丁洪). Chin. Phys. B, 2019, 28(3): 037103.
[14] Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS
Guang-Hao Hong(洪光昊), Cheng-Wei Wang(王成玮), Juan Jiang(姜娟), Cheng Chen(陈成), Sheng-Tao Cui(崔胜涛), Hai-Feng Yang(杨海峰), Ai-Ji Liang(梁爱基), Shuai Liu(刘帅), Yang-Yang Lv(吕洋洋), Jian Zhou(周健), Yan-Bin Chen(陈延彬), Shu-Hua Yao(姚淑华), Ming-Hui Lu(卢明辉), Yan-Feng Chen(陈延峰), Mei-Xiao Wang(王美晓), Le-Xian Yang(杨乐仙), Zhong-Kai Liu(柳仲楷), Yu-Lin Chen(陈宇林). Chin. Phys. B, 2018, 27(1): 017105.
[15] Electronic structure of heavy fermion system CePt2In7 from angle-resolved photoemission spectroscopy
Bing Shen(沈兵), Li Yu(俞理), Kai Liu(刘凯), Shou-Peng Lyu(吕守鹏), Xiao-Wen Jia(贾小文), E D Bauer, J D Thompson, Yan Zhang(张艳), Chen-Lu Wang(王晨露), Cheng Hu(胡成), Ying Ding(丁颖), Xuan Sun(孙璇), Yong Hu(胡勇), Jing Liu(刘静), Qiang Gao(高强), Lin Zhao(赵林), Guo-Dong Liu(刘国东), Zu-Yan Xu(许祖彦), Chuang-Tian Chen(陈创天), Zhong-Yi Lu(卢仲毅), X J Zhou(周兴江). Chin. Phys. B, 2017, 26(7): 077401.
No Suggested Reading articles found!