Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098105    DOI: 10.1088/1674-1056/ac7211
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method

Kang-Wei Wang(王康伟)1,2, Meng-Wu Wu(吴孟武)1,2,†, Bing-Hui Tian(田冰辉)1,2, and Shou-Mei Xiong(熊守美)3
1 School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China;
2 Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China;
3 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  A numerical model is developed by coupling the cellular automaton (CA) method and the lattice Boltzmann method (LBM) to simulate the dendritic growth of Al-Cu alloy in both two and three dimensions. An improved decentered square algorithm is proposed to overcome the artificial anisotropy induced by the CA cells and to realize simulation of dendritic growth with arbitrary orientations. Based on the established CA-LBM model, effects of forced convection and gravity-driven natural convection on dendritic growth are studied. The simulation results show that the blocking effect of dendrites on melt flow is advanced with a larger number of seeds. The competitive growth of the converging columnar dendrites is determined by the interaction between heat flow and forced convection. Gravity-driven natural convection leads to highly asymmetric growth of equiaxed dendrites. With sinking downwards of the heavy solute, chimney-like or mushroom-like solute plumes are formed in the melt in front of the columnar dendrites when they grow along the gravitational direction. More details on dendritic growth of Al-Cu alloy under convection are revealed by 3D simulations.
Keywords:  simulation      cellular automaton      dendritic growth      melt convection  
Received:  28 January 2022      Revised:  20 April 2022      Accepted manuscript online:  23 May 2022
PACS:  81.30.Fb (Solidification)  
  47.11.-j (Computational methods in fluid dynamics)  
  68.08.De (Liquid-solid interface structure: measurements and simulations)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51805389), the Key R&D Program of Hubei Province, China (Grant No. 2021BAA048), the 111 Project (Grant No. B17034) and the fund of Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology (Grant No. XDQCKF2021011).
Corresponding Authors:  Meng-Wu Wu     E-mail:  wumw@whut.edu.cn

Cite this article: 

Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美) Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method 2022 Chin. Phys. B 31 098105

[1] Tang Y, Wu Y, Zhang Y, Dai Y B, Dong Q, Han Y F, Zhu G L, Zhang J, Fu Y N and Sun B D 2021 Acta Mater. 212 116861
[2] Ren N, Li J, Panwisawas C, Xia M X, Dong H B and Li J G 2021 Acta Mater. 206 116620
[3] Wang T, Hachani L, Fautrelle Y, Delannoy Y, Wang E, Wang X D and Budenkova O 2020 Int. J. Heat Mass Transfer 151 119414
[4] Qin L, Shen J, Li Q D and Shang Z 2017 J. Cryst. Growth 466 45
[5] Hachani L, Zaidat K and Fautrelle Y 2015 Int. J. Heat Mass Transfer 85 438
[6] Peng P, Li S Y, Zheng W C, Lu L and Zhou S D 2021 Trans. Nonferrous Met. Soc. China 31 3096
[7] Ngomesse F, Reinhart G, Soltani H, Zimmermann G, Browne D J, Sillekens W and Nguyen-Thi H 2021 Acta Mater. 221 117401
[8] Shevchenko N, Boden S, Gerbeth G and Eckert S 2013 Metall. Mater. Trans. A 44 3797
[9] Shevchenko N, Roshchupkina O, Sokolova O and Eckert S 2015 J. Cryst. Growth 417 1
[10] Akamatsu S and Henri N T 2016 Acta Mater. 108 325
[11] Henri N T, Luc S, Ragnvald H M, Lars A, Bernard B, Michel S and Guillaume R 2012 C. R. Phys. 13 237
[12] Clarke A J, Tourret D, Song Y, Imhoff S D, Gibbs P J, Gibbs J W, Fezzaa K and Karma A 2017 Acta Mater. 129 203
[13] Yan X W, Xu Q Y and Liu B C 2017 J. Cryst. Growth 479 22
[14] Gu C, Ridgeway C D, Moodiispaw M P and Luo A A 2020 J. Mater. Process. Technol. 286 116829
[15] Xiong L D, Zhu G L, Mi G Y, Wang C M and Jiang P 2021 J. Alloy. Compd. 858 157669
[16] Takaki T, Sato R, Rojas R, Ohno M and Shibuta Y 2018 Comput. Mater. Sci. 147 124
[17] Ratkai L, Pusztai T A and Granasy L 2019 npj Comput. Mater. 5 1
[18] Zhang Q Y, Sun D K, Zhang S H, Wang H and Zhu M F 2020 Chin. Phys. B 29 078104
[19] Rodgers T M, Moser D, Abdeljawad F, Underwood Jackson O D, Carroll J D, Jared B H, Bolintineanu D S, Mitchell J A and Madison J D 2021 Addit. Manufact. 41 101953
[20] Zhang Z D, Cao Y T, Sun D K, Xing H, Wang J C and Ni Z H 2020 Chin. Phys. B 29 028103
[21] Song Y H, Wang M T, Ni J, Jin J F and Zong Y P 2020 Chin. Phys. B 29 128201
[22] Song W, Zhang J M, Wang S X, Wang B and Han L L 2016 J. Cent. South Univ. 23 2156
[23] Fang H, Xue H, Tang Q Y, Zhang Q Y, Pan S Y and Zhu M F 2019 Acta Phys. Sin. 68 048102 (in Chinese)
[24] Zhu M F, Dai T, Lee S Y and Hong C P 2008 Comput. Math. Appl. 55 1620
[25] Sun D K, Chai Z H, Li Q and Lin G 2018 Chin. Phys. B 27 088105
[26] Yin H, Felicelli S D and Wang L 2011 Acta Mater. 59 3124
[27] Liu L, Pian S, Zhang Z, Bao Y, Li R and Chen H 2018 Comput. Mater. Sci. 146 9
[28] Ma R, Dong Z B and Wei Y H 2009 Cryst. Res. Technol. 44 1197
[29] Rolchigo M R, Mendoza M Y, Samimi P, Brice D A, Martin B, Collins P C and Lesar R 2017 Metall. Mater. Trans. 48 3606
[30] Daud A and Bilal M 2014 Appl. Math. Comput. 233 72
[31] Chai Z H and Shi B C 2020 Phys. Rev. E 102 023306
[32] Qian Y H, Humieres D D and Lallemand P 1992 Europhys. Lett. 17 479
[33] Guo Z L, Zheng C G and Shi B C 2002 Phys. Rev. E 65 046308
[34] Shi B C, Deng B and Chen X W 2007 Comput. Math. Appl. 55 1568
[35] Zhang L Q, Yang S L, Zeng Z and Chew J W 2018 Comput. Fluids 176 153
[36] Riheb M, Hassane N, Hacen D, Sihem H and Zohir Y 2020 Int. Commun. Heat Mass Transfer 119 104992
[37] He S Y, Habte B T and Jiang F M 2017 Int. Commun. Heat Mass Transfer 82 1
[38] Mei R W, Shy Y W, Yu D Z and Luo L S 2000 J. Comput. Phys. 161 680
[39] Leila J, Nor A C S, Alireza F and Mahmoud P H A 2016 Int. Commun. Heat Mass Transfer 78 1
[40] Guo Z L, Zheng C G and Shi B C 2002 Chin. Phys. 11 366
[41] Paul L, Pierre B J and Alain N 1991 Physica D 47 233
[42] Wu M W and Xiong S M 2012 Trans. Nonferrous Met. Soc. China 22 2212
[43] Gandin C A and Rappaz M 1994 Acta Mater. 42 2233
[44] Wang W, Lee P H and Mclean M 2003 Acta Mater. 51 2971
[45] Zhu M Y, Wang W L, Ji C and Luo S 2018 Metall. Mater. Trans. 49 200
[46] Zhu M Y, Gao X H, Meng X N, Cui L, Zhang K and Meng Y F 2020 Mater. Res. Express 7 056505
[47] Zhang Q Y, Sun D K, Pan S Y and Zhu M F 2020 Int. J. Heat Mass Transfer 146 118838
[48] Sun D K, Zhang Q Y, Cao W S and Zhu M F 2015 Chin. Phys. Lett. 32 68103
[49] Walton D and Chalmers B 1959 Trans. Metall. Soc. AIME 215 447
[50] Jaehoon L, Ohno M, Shibuta Y and Takaki T 2021 J. Cryst. Growth 558 126014
[51] Pavan L V, Wang F, Michael S and Britta N 2021 Comput. Mater. Sci. 186 109964
[1] Gyrokinetic simulation of low-n Alfvénic modesin tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪), and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[3] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[4] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[5] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[6] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[9] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[10] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[11] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[12] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[13] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[14] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[15] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
No Suggested Reading articles found!