Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 103201    DOI: 10.1088/1674-1056/ac720c
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Formation of high-density cold molecules via electromagnetic trap

Ya-Bing Ji(纪亚兵)1, Bin Wei(魏斌)2, Heng-Jiao Guo(郭恒娇)1, Qing Liu(刘青)1, Tao Yang(杨涛)1,3, Shun-Yong Hou(侯顺永)1,†, and Jian-Ping Yin(印建平)1,‡
1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China;
2. Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China;
3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Preparation and control of cold molecules are advancing rapidly, motivated by many exciting applications ranging from tests of fundamental physics to quantum information processing. Here, we propose a trapping scheme to create high-density cold molecular samples by using a combination of electric and magnetic fields. In our theoretical analysis and numerical calculations, a typical alkaline-earth monofluoride, MgF, is used to test the feasibility of our proposal. A cold MgF molecular beam is first produced via an electrostatic Stark decelerator and then loaded into the proposed electromagnetic trap, which is composed of an anti-Helmholtz coil, an octupole, and two disk electrodes. Following that, a huge magnetic force is applied to the molecular sample at an appropriate time, which enables further compressing of the spatial distribution of the cold sample. Molecular samples with both higher number density and smaller volume are quite suitable for the laser confinement and other molecular experiments such as cold collisions in the next step.
Keywords:  Stark effect      Zeeman effect      cold molecules  
Received:  02 April 2022      Revised:  15 May 2022      Accepted manuscript online: 
PACS:  32.60.+i (Zeeman and Stark effects)  
  37.10.Pq (Trapping of molecules)  
  37.10.Mn (Slowing and cooling of molecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91536218, 11874151, and 11834003), the Fundamental Research Funds for the Central Universities, China, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and the Young Top-Notch Talent Support Program of Shanghai, China.
Corresponding Authors:  Shun-Yong Hou, Jian-Ping Yin     E-mail:  syhou@lps.ecnu.edu.cn;jpyin@phy.ecnu.edu.cn

Cite this article: 

Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平) Formation of high-density cold molecules via electromagnetic trap 2022 Chin. Phys. B 31 103201

[1] Andreev V, Ang D G, DeMille D, Doyle J M, Gabrielse G, Haefner J, Hutzler N R, Lasner Z, Meisenhelder C, O'Leary B R, Panda C D, West A D, West E P, Wu X and Collaboration A 2018 Nature 562 355
[2] Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E and Kozyryev I 2014 Science 343 269
[3] Cheng C, van der Poel A P P, Jansen P, Quintero-Perez M, Wall T E, Ubachs W and Bethlem H L 2016 Phys. Rev. Lett. 117 253201
[4] Segev Y, Pitzer M, Karpov M, Akerman N, Narevicius J and Narevicius E 2019 Nature 572 189
[5] Kirste M, Wang X, Schewe H C, Meijer G, Liu K, van der Avoird A, Janssen L M C, Gubbels K B, Groenenboom G C and van de Meerakker S Y T 2012 Science 338 1060
[6] Perreault W E, Mukherjee N and Zare R N 2017 Science 358 356
[7] DeMille D 2002 Phys. Rev. Lett. 88 067901
[8] Baranov M A, Dalmonte M, Pupillo G and Zoller P 2012 Chem. Rev. 112 5012
[9] Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R, Rey A M, Jin D S and Ye J 2013 Nature 501 521
[10] Bohn J L, Rey A M and Ye J 2017 Science 357 1002
[11] Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A and Meijer G 2000 Nature 406 491
[12] Crompvoets F M, Bethlem H L, Jongma R T and Meijer G 2001 Nature 411 174
[13] van Veldhoven J, Bethlem H L and Meijer G 2005 Phys. Rev. Lett. 94 083001
[14] Sawyer B C, Stuhl B K, Wang D, Yeo M and Ye J 2008 Phys. Rev. Lett. 101 203203
[15] Stuhl B K, Hummon M T, Yeo M, Quemener G, Bohn J L and Ye J 2012 Nature 492 396
[16] Haas D, von Planta C, Kierspel T, Zhang D and Willitsch S 2019 Commun. Phys. 2 101
[17] Przybylska M, Maciejewski A J and Yaremko Y 2020 New J. Phys. 22 103047
[18] Fitch N J, Parazzoli L P and Lewandowski H J 2020 Phys. Rev. A 101 032703
[19] Reens D, Wu H, Langen T and Ye J 2017 Phys. Rev. A 96 063420
[20] Sawyer B C, Lev B L, Hudson E R, Stuhl B K, Lara M, Bohn J L and Ye J 2007 Phys. Rev. Lett. 98 253002
[21] Stuhl B K, Yeo M, Sawyer B C, Hummon M T and Ye J 2012 Phys. Rev. A 85 033427
[22] Friedrich B and Herschbach D 2000 Phys. Chem. Chem. Phys. 2 419
[23] Lara M, Lev B L and Bohn J L 2008 Phys. Rev. A 78 033433
[24] Shagam Y and Narevicius E 2012 Phys. Rev. A 85 053406
[25] Cremers T, Janssen N, Sweers E and van de Meerakker S Y T 2019 Rev. Sci. Instrum. 90 013104
[26] Chae E 2021 Phys. Chem. Chem. Phys 23 1215
[27] Xu L, Yin Y, Wei B, Xia Y and Yin J 2016 Phys. Rev. A 93 013408
[28] Asensio Ramos A and Trujillo Bueno J 2006 Astrophys. J. 636 548
[29] Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T and Meijer G 2002 Phys. Rev. A 65 053416
[30] Marian A, Haak H, Geng P and Meijer G 2010 Euro. Phys. J. D 59 179
[31] Plomp V, Gao Z, Cremers T and van de Meerakker S Y T 2019 Phys. Rev. A 99 033417
[32] Wall T E, Kanem J F, Dyne J M, Hudson J J, Sauer B E, Hinds E A and Tarbutt M R 2011 Phys. Chem. Chem. Phys. 13 18991
[33] Stapelfeldt H, Sakai H, Constant E and Corkum P B 1997 Phys. Rev. Lett. 79 2787
[34] Suk Zhao B, Sung Chung H, Cho K, Hyup Lee S, Hwang S, Yu J, Ahn Y H, Sohn J Y, Kim D S, Kyung Kang W and Chung D S 2000 Phys. Rev. Lett. 85 2705
[35] Harland P W, Hu W P, Vallance C and Brooks P R 1999 Phys. Rev. A 60 3138
[36] Aggarwal P, Bethlem H L, Borschevsky A, Denis M, Esajas K, Haase P A B, Hao Y, Hoekstra S, Jungmann K, Meijknecht T B, Mooij M C, Timmermans R G E, Ubachs W, Willmann L and Zapara A 2018 Euro. Phys. J. D 72 197
[37] Collaboration N L e, Aggarwal P, Yin Y, Esajas K, Bethlem H L, Boeschoten A, Borschevsky A, Hoekstra S, Jungmann K, Marshall V R, Meijknecht T B, Mooij M C, Timmermans R G E, Touwen A, Ubachs W and Willmann L 2021 Phys. Rev. Lett. 127 173201
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Analysis of asymmetry of the Dα emission spectra under the Zeeman effect in boundary region for D-D experiment on EAST tokamak
Wei Gao(高伟), Juan Huang(黄娟), Jianxun Su(宿建勋), Jing Fu(付静), Yingjie Chen(陈颖杰), Wei Gao(高伟), Zhenwei Wu(吴振伟), and EAST Team. Chin. Phys. B, 2021, 30(2): 025201.
[3] Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新). Chin. Phys. B, 2021, 30(12): 123204.
[4] Hyperfine structures and the field effects of IBr molecule in its rovibronic ground state
Defu Wang(王得富), Xuping Shao(邵旭萍), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), and Xiaohua Yang(杨晓华). Chin. Phys. B, 2021, 30(11): 113301.
[5] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[6] Ellipticity-dependent ionization yield for noble atoms
Hristina Deliba?i?, Violeta Petrovi?. Chin. Phys. B, 2019, 28(8): 083201.
[7] Generation of high-energy-resolved NH3 molecular beam by a Stark decelerator with 179 stages
Bin Wei(魏斌), Shunyong Hou(侯顺永), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shengqiang Li(李胜强), Jianping Yin(印建平). Chin. Phys. B, 2019, 28(5): 053701.
[8] Laser-assisted Stark deceleration of CaF in its rovibronic ground (high-field-seeking) state
Yuefeng Gu(顾跃凤), Kai Chen(陈凯), Yunxia Huang(黄云霞), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(4): 043702.
[9] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[10] Optical Stark deceleration of neutral molecules from supersonic expansion with a rotating laser beam
Yongcheng Yang(杨永成), Shunyong Hou(侯顺永), Lianzhong Deng(邓联忠). Chin. Phys. B, 2018, 27(5): 053701.
[11] High quality electromagnetically induced transparency spectroscopy of 87Rb in a buffer gas cell with a magnetic field
Hong Cheng(成红), Han-Mu Wang(王汉睦), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Jun Luo(罗军), Hong-Ping Liu(刘红平). Chin. Phys. B, 2017, 26(7): 074204.
[12] Investigation of the nonlinear CPT spectrum of 87Rb and its application for large dynamic magnetic measurement
Chi Xu(徐迟), Shi-Guang Wang(王时光), Yong Hu(胡勇), Yan-Ying Feng(冯焱颖), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(6): 064203.
[13] Production of cold CN molecules by photodissociating ICN precursors in brute-force field
Wen-Xia Xu(徐文霞), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠). Chin. Phys. B, 2017, 26(5): 053702.
[14] Analysis of the Zeeman effect on Dα spectra on the EAST tokamak
Wei Gao(高伟), Juan Huang(黄娟), Chengrui Wu(吴承瑞), Zong Xu(许棕), Yumei Hou(侯玉梅), Zhao Jin(金钊), Yingjie Chen(陈颖杰), Pengfei Zhang(张鹏飞), Ling Zhang(张凌), Zhenwei Wu(吴振伟), EAST Team. Chin. Phys. B, 2017, 26(4): 045203.
[15] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
No Suggested Reading articles found!