Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 107303    DOI: 10.1088/1674-1056/ac6ee8
REVIEW Prev   Next  

Energy band and charge-carrier engineering in skutterudite thermoelectric materials

Zhiyuan Liu(刘志愿)1,2,†, Ting Yang(杨婷)2, Yonggui Wang(王永贵)2, Ailin Xia(夏爱林)1,2, and Lianbo Ma(马连波)1,2
1. Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Ministry of Education), Anhui University of Technology, Maanshan 243002, China;
2. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
Abstract  The binary CoSb3 skutterudite thermoelectric material has high thermal conductivity due to the covalent bond between Co and Sb, and the thermoelectric figure of merit, ZT, is very low. The thermal conductivity of CoSb3 materials can be significantly reduced through phonon engineering, such as low-dimensional structure, the introduction of nano second phases, nanointerfaces or nanopores, which greatly improves their ZT values. The phonon engineering can optimize significantly the thermal transport properties of CoSb3-based materials. However, the improvement of the electronic transport properties is not obvious, or even worse. Energy band and charge-carrier engineering can significantly improve the electronic transport properties of CoSb3-based materials while optimizing the thermal transport properties. Therefore, the decoupling of thermal and electronic transport properties of CoSb3-based materials can be realized by energy band and charge-carrier engineering. This review summarizes some methods of optimizing synergistically the electronic and thermal transport properties of CoSb3 materials through the energy band and charge-carrier engineering strategies. Energy band engineering strategies include band convergence or resonant energy levels caused by doping/filling. The charge-carrier engineering strategy includes the optimization of carrier concentration and mobility caused by doping/filling, forming modulation doped structures or introducing nano second phase. These strategies are effective means to improve performance of thermoelectric materials and provide new research ideas of development of high-efficiency thermoelectric materials.
Keywords:  CoSb3-based skutterudite materials      energy band engineering      charge-carrier engineering      thermoelectric properties  
Received:  29 March 2022      Revised:  02 May 2022      Accepted manuscript online: 
PACS:  73.50.Lw (Thermoelectric effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  74.25.F- (Transport properties)  
  74.25.fc (Electric and thermal conductivity)  
Fund: This review was supported by the National Natural Science Foundation of China (Grant No. 51872006) and the Excellent Youth Project of Natural Science Foundation of Anhui Province of China (Grant No. 2208085Y17).
Corresponding Authors:  Zhiyuan Liu     E-mail:  zhiyuanliu826@ahut.edu.cn

Cite this article: 

Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波) Energy band and charge-carrier engineering in skutterudite thermoelectric materials 2022 Chin. Phys. B 31 107303

[1] Bell L E 2008 Science 321 1457
[2] Snyder G J and Toberer E S 2011 Nat. Mater. 7 105
[3] Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[4] Xiao Y, Wu H J, Li W, Yin M J, Pei Y L, Zhang Y, Fu L W, Chen Y X, Pennycook S J, Huang L, He J Q and Zhao L D 2017 J. Am. Chem. Soc. 139 18732
[5] Moshwan R, Yang L, Zou J and Chen Z G 2017 Adv. Funct. Mater. 27 1703278
[6] Sui J, Li J, He J, Pei Y L, Berardan D, Wu H, Dragoe N, Cai W and Zhao L D 2013 Energ. Environ. Sci. 6 2916
[7] Xia K Y, Hu C, Fu C L, Zhao X B and Zhu T J 2021 Appl. Phys. Lett. 118 140503
[8] Sales B C, Mandrus D and Williams R K 1996 Science 272 1325
[9] Zhao W Y, Liang Z, Wei P, Yu J, Zhang Q J and Shao G S 2012 Acta Mater. 60 1741
[10] Yang D W, Su X L, He J, Yan Y G, Li J, Bai H, Luo T T, Liu Y M, Luo H, Yu Y M, Wu J S, Zhang Q J, Uher C and Tang X F 2021 Nat. Commun. 12 6077
[11] Zong P A, Hanus R, Dylla M, Tang Y S, Liao J C, Zhang Q H, Snyder G and Chen L 2017 Energy Environ. Sci. 10 183
[12] Jing H M, Tong X, Zhu J L, Yang T, Xia A L, Liu Z Y and Jin C G 2021 Ceram. Int. 47 24916
[13] Zhu J L, Tong X, Niu S, Liu Z Y and Xu D 2021 J. Wuhan Univ. Technol. 36 353
[14] Tong X, Liu Z Y, Zhu J L, Yang T, Wang Y G and Xia A L 2021 Front. Mater. Sci. 15 317
[15] Liu Z Y, Zhu W T, Nie X L and Zhao W Y 2019 J. Mater. Sci.-Mater. El. 30 12493
[16] Zhao W Y, Liu Z Y, Sun Z G, Zhang Q J, Wei P, Mu X, Zhou H Y, Li C C, Ma S F, He D Q, Ji P X, Zhu W T, Nie X L, Su X L, Tang X F, Shen B G, Dong X L, Yang J H, Liu Y and Shi J 2017 Nature 549 247
[17] Shi X, Yang J, Salvador J R, Chi M F, Cho J, Wang H, Bai S Q, Yang J H, Zhang W Q and Chen L D 2011 J. Am. Chem. Soc. 133 7837
[18] Rogl G, Bursik J, Grytsiv A, Puchegger S, Soprunyuk V, Schranz W, Yan X, Bauer E and Roo R 2018 Acta. Mater. 145 359
[19] Saeed M, Khan B, Ahmad I, Saleemi A S, Rehman N, Aliabad H A R and Uddin S 2019 RSC. Adv. 9 24981
[20] Cailiat T, Borshchevsky A and Fleurial J P 1996 J. Appl. Phys. 80 4442
[21] Liu Z Y, Zhu J L, Tong X, Niu S and Zhao W Y 2020 J. Adv. Ceram. 9 647
[22] Toprak M S, Stiewe C, Platzek D, Williams S, Bertini L, Müller E, Gatti C, Zhang Y, Rowe M and Muhammed M 2004 Adv. Funct. Mater. 14 1189
[23] Mi J L, Zhu T J and Zhao X B 2007 J. Appl. Phys. 101 054314
[24] Ahmed A and Han S 2019 J. Alloys. Compd. 790 577
[25] Zhao W Y, Liu Z Y, Wei P, Zhang Q J, Zhu W T, Su X L, Tang X F, Yang J H, Liu Y, Shi J, Chao Y M, Lin S Q and Pei Y Z 2017 Nat. Nanotechnol. 12 55
[26] Qin D D, Wu H J, Cai S T, Zhu J B, Cui B, Yin L, Qin H X, Shi W J, Zhang Y, Zhang Q, Liu W S, Cao J, Pennycook S J, Cai W and Sui J H 2019 Adv. Energy Mater. 9 1902435
[27] Ghosh S, Shankar G, Karati A, Rogl G, Rogl P, Bauer E, Murty B S, Suwas S and Mallik R C 2020 Dalton Trans. 49 15883
[28] Zhu J L, Liu Z Y, Tong X, Xia A L, Xu D, Lei Y, Yu J, Tang D G, Ruan X F and Zhao W Y 2021 ACS Appl. Mater. Interfaces 13 23894
[29] Yu J, Zhao W Y, Wei P, Zhu W, Zhou H Y, Liu Z Y, Tang D G, Lei B and Zhang Q J 2014 Appl. Phys. Lett. 104 142104
[30] Khan A U, Kobayashi K, Tang D M, Yamauchi Y, Hasegawa K, Mitome M, Xue Y, Jiang B Z, Tsuchiya K, Golberg D, Bando Y and Mori T 2017 Nano Energy 31 152
[31] Yang H J, Wen P F, Zhou X L, Li Y, Duan B, Zhai P C and Zhang Q J 2019 Scripta Mater. 159 68
[32] Xi L L, Yang J, Shi X, Zhang W Q, Chen L D and Yang J H 2011 Sci. Sin.-Phys. Mech. Astron. 41 706
[33] Shi X, Kong H, Li C P, Uher C, Yang J, Salvador J R, Wang H, Chen L and Zhang W 2008 Appl. Phys. Lett. 92 182101
[34] Guo S P, Anand S, Brod M K, Zhang Y S and Snyder G J 2022 J. Mater. Chem. A 10 3051
[35] Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J and Uher C 2012 Phys. Rev. Lett. 108 166601
[36] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J 2011 Nature 473 66
[37] Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X, Li J F, He J Q and Zhao L D 2021 Science 373 556
[38] Xu W J, Zhang Z W, Liu C Y, Ga J, Ye Z Y, Chen C G, Peng Y, Bai X B and Miao L 2021 J. Adv. Ceram. 10 860
[39] Valiyaveettil S M, Nguyen D L, Wong D P, Hsing C R, Paradis-Fortin L, Qorbani M, Sabbah A, Chou T L, Wu K K, Rathinam V, Wei C M, Chen L C and Chen K H 2022 Inorg. Chem. 61 4442
[40] Chen Z Y, Guo X M, Zhang F J, Shi Q, Tang M J and Ang R 2020 J. Mater. Chem. A 8 16790
[41] Ibáñez M, Hasler R, Genç A, Liu Y, Kuster B, Schuster M, Dobrozhan O, Cadavid D, Arbiol J, Cabot A and Kovalenko M V 2019 J. Am. Chem. Soc. 141 8025
[42] Xu F, Zhang D, Gao S K, Yang L, San X Y, Li Z L, Qian X, Yang J Y and Wang S F 2022 Scripta Mater. 208 114360
[43] Zhao L D, Wang S and Xiao Y 2021 Acta Metall. Sin. 57 1171 (in Chinese)
[44] Pei Y L, Wu H, Wu D, Zheng F and He J 2014 J. Am. Chem. Soc. 136 13902
[45] Wang Z Y, Xi J Y, Ning J Y, Guo K, Duan B, Luo J, Snyder G J, Yang J and Zhang W Q 2021 Chem. Mater. 33 1046
[46] Zheng Z H, Shi X L, Ao D W, Liu W D, Chen Y X, Li F, Chen S, Tian X Q, Li X R, Duan J Y, Ma H L, Zhang X H, Liang G X, Fan P and Chen Z G 2021 Nano Energy 81 105683
[47] Zhao W Y, Wei P, Zhang Q J, Peng H, Zhu W T, Tang D G, Yu J, Zhou H Y, Liu Z Y, Mu X, He D Q, Li J C, Wang C L, Tang X F and Yang J H 2015 Nat. Commun. 6 6197
[48] Tan G J, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[49] Nie G, Li W J, Guo J Q, Yamamoto A, Kimura K, Zhang X M, Isaacs E B, Dravid V, Wolverton C, Kanatzidis M G and Priya S 2019 Nano Energy 66 104193
[50] Zhu T J, Liu Y T, Fu C G, Heremans J P, Snyder J G and Zhao X B 2017 Adv. Mater. 29 1605884
[51] Cutler M, Leavy J F and Fitzpatrick R L 1964 Phys. Rev. 133 A1143
[52] Heremans J P, Wiendlocha B and Chamoire A M 2012 Energy Environ. Sci. 5 5510
[53] Zhang Q Y, Wang H, Liu W S, Wang H Z, Yu B, Zhang Q, Tian Z Y, Ni G, Lee S. Esfarjani K, Chen G and Ren Z F 2012 Energy Environ. Sci. 5 5246
[54] Liu, H T, Sun Q, Zhong Y, Xia, C L, Chen Y, Chen Z G and Ang R 2022 Chem. Eng. J. 428 132601
[55] Koenig J D, Nielsen M D, Gao Y B, Winkler M, Jacquot A, Bottner H and Heremans J P 2011 Phys. Rev. B 84 205126
[56] Leszczynski J, Ros V, Lenoir B, Dauscher A, Candolfi C, Masschelein P, Hejtmanek J, Kutorasinski K, Tobola J, Smith R I, Stiewe C and Muller E 2013 J. Phys. D: Appl. Phys. 46 495106
[57] Tang Y L, Qiu Y T, Xi L L, Shi X, Zhang W Q, Chen L D, Tseng S M, Chen S W and Snyder G J 2014 Energy Environ. Sci. 7 812
[58] Tu Z K, Sun X, Li X, Li R X, Xi L L and Yang J 2019 Aip. Adv. 9 045325
[59] Tang Y L, Gibbs Z M, Agapito L A, Li G D, Kim H S, Nardelli M B, Curtarolo S and Snyder G J 2015 Nat. Mater. 14 1223
[60] Hanus R, Guo X Y, Tang Y L, Li G D, Snyder G J and Zeier W G 2017 Chem. Mater. 29 1156
[61] Shi X Y, Yang J, Wu L J, Salvador J R, Zhang C, Villaire W L, Haddad D, Yang J H, Zhu Y M and Li Q 2015 Sci. Rep. 5 14641
[62] Zhang J L, Zhang L X, Ren W Q, Gou W Q, Zhang J C and Geng H Y 2021 ACS Appl. Mater. Interfaces 13 29809
[63] Qiu Y T, Xi L L, Shi X, Qiu P F, Zhang W Q, Chen L D, Salvador J R, Cho J Y, Yang J H, Chien Y C, Chen S W, Tang Y L and Snyder G J 2013 Adv. Funct. Mater. 23 3194
[64] Bhardwaj R, Raghuvanshi P R, Dhakate S R, Bathula S, Bhattacharya A and Gahtori B 2021 ACS Appl. Energy Mater. 4 14210
[65] Koleżyński A and Szczypka W 2017 J. Alloys Compod. 691 299
[66] Cutler M and Mott N F 1969 Phys. Rev. 181 1336
[67] Kumar S R S, Barasheed A Z and Alshareef H N 2013 ACS Appl. Mater. Interfaces 5 7268
[68] Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J and Zhang Y L 2016 Sci. Rep. 6 33135
[69] Wan C L, Gu X K, Dang F, Itoh T, Wang Y F, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R J and Koumoto K 2015 Nat. Mater. 14 622
[70] Fu G S, Zuo L, Chen J, Lu M and Yu L Y 2015 J. Appl. Phys. 117 125304
[71] Zhong Y, Tang J, Liu H T, Chen Z W, Lin L W, Ren D, Liu B and Ang R 2020 ACS Appl. Mater. Interfaces 12 49323
[72] Liu H T, Sun Q, Zhong Y, Deng Q, Gan L, Lv F L, Shi X L, Chen Z G and Ang R 2022 Nano Energy 91 106706
[73] Zhu T J, Xu Z J, He J, Shen J J, Zhu S, Hu L P, Tritt T M and Zhao X B 2013 J. Mater. Chem. A 1 11589
[74] Wang S N, Xiao Y, Ren D D, Su L Z, Qiu Y T and Zhao L D 2020 J. Alloy. Compd. 836 155473
[75] Zhao W Y, Wei P, Zhang Q J, Dong C L, Liu L S and Tang X F 2009 J. Am. Chem. Soc. 131 3713
[76] Rogl G, Grytsiv A, Rogl P, Peranio N, Bauer E, Zehetbauer M and Eibl O 2014 Acta Mater. 63 30
[77] Anno H and Matsubara K 1999 J. Appl. Phys. 86 3780
[78] Su X L, Li H, Yan Y G, Wang G Y, Chi H, Zhou X Y, Tang X F, Zhang Q J and Uher C 2012 Acta Mater. 60 3536
[79] Duan B, Yang J, Salvador J R, He Y, Zhao B, Wang S Y, Wei P, Ohuchi F S, Zhang W Q, Hermann R P, Gourdon O, Mao S X, Cheng Y W, Wang C M, Liu J, Zhai P C, Tang X F, Zhang Q J and Yang J H 2016 Energy Environ. Sci. 9 2090
[80] Liu Z Y, Zhu J L, Wei P, Zhu W T, Zhao W Y, Xia A L, Xu D, Lei Y and Yu J 2019 ACS Appl. Mater. Interfaces 11 45875
[81] Fu L W, Yang J Y, Peng J Y, Jiang Q H, Xiao Y, Luo Y B, Zhang D, Zhou Z W, Zhang M Y, Cheng Y D and Cheng F Q 2015 J. Mater. Chem. A 3 1010
[82] Qin D D, Cui B, Zhu J B, Shi W J, Qin H X, Guo F K, Cao J, Cai W and Sui J H 2020 ACS Appl. Mater. Interfaces 12 12930
[83] Peng J Y, Zheng J, Shen F H, Zhang K, He J, Zeng J S, Xiao W L and An B 2016 Intermetallics 76 33
[84] Qin D D, Cui B, Meng X F, Qin P, Xie L, Zhang Q, Liu W S, Cao J, Cai W and Sui J H 2019 Mater. Today Phys. 8 128
[85] Qin D D, Shi W J, Xue W, Qin H X, Cao J, Cai W, Wang Y and Sui J H 2020 Mater. Today Phys. 13 100206
[86] Li Y, Qiu P F, Xiong Z, Chen J K, Nunna R, Shi X and Chen L D 2015 Aip Adv. 5 117239
[87] Mallik R C, Anbalagan R, Rogl G, Royanian E, Heinrich P, Bauer E, Rogl P and Suwas S 2013 Acta Mater. 61 6698
[88] Zhou X Y, Wang G Y, Zhang L, Chi H, Su X L, Sakamoto J and Uher C 2012 J. Mater. Chem. 22 2958
[89] Su X L, Li H, Wang G Y, Chi H, Zhou X Y, Tang X F, Zhang Q J and Uher C 2011 Chem. Mater. 23 2948
[90] Ballikaya S and Uher C 2014 J. Alloys. Compd. 585 168
[91] Benyahia M, Ohorodniichuk V, Leroy E, Dauscher A, Lenoir B and Alleno E 2018 J. Alloys. Compd. 735 1096
[92] Zhang X Y and Pei Y Z 2017 Npj Quantum Mater. 2 68
[93] Zebarjadi M, Joshi G, Zhu G H, Yu B, Minnich A, Lan Y C, Wang X W, Dresselhaus M, Ren Z F and Chen G 2011 Nano Lett. 11 2225
[94] Tsukazaki A, Akasaka S, Nakahara K, Ohno Y, Ohno H, Maryenko D, Ohtomo A and Kawasaki M 2010 Nat. Mater. 9 889
[95] Salvador J R, Waldo R A and Wong C A 2013 Mater. Sci. Eng. B 178 1087
[96] Shi X, Kong H, Li C P, Uher C, Yang J, Salvador J R, Wang H, Chen L and Zhang W 2008 Appl. Phys. Lett. 92 182101
[97] Bai S Q, Pei Y Z, Chen L D, Zhang W Q, Zhao X Y and Yang J 2009 Acta Mater. 57 3135
[98] Kim Y J, Zhao L D, Kanatzidis M G and Seidman D N 2017 ACS Appl. Mater. Interfaces 9 21791
[99] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109
[100] Meng X F, Liu Z H, Cui B, Qin D D, Geng H Y, Cai W, Fu L W, He J Q, Ren Z F and Sui J H 2017 Adv. Energy Mater. 7 1602582
[101] Hwang J Y, Kim J, Kim H S, Kim S I, Lee K H and Kim S W 2018 Adv. Energy Mater. 8 1800065
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[3] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[4] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[5] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[6] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[7] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[8] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[9] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[10] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[11] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[12] Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Sen Chen(陈森), Dan Yan(闫丹), Jin-GuangYang(杨金光), Li Wang(王立), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2018, 27(5): 057201.
[13] Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy
Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047211.
[14] Enhanced thermoelectric performance in p-type Mg3Sb2 via lithium doping
Hao Wang(王浩), Jin Chen(陈进), Tianqi Lu(陆天奇), Kunjie Zhu(朱坤杰), Shan Li(李珊), Jun Liu(刘军), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2018, 27(4): 047212.
[15] Graphene-enhanced thermoelectric properties of p-type skutterudites
Dandan Qin(秦丹丹), Yuan Liu(刘嫄), Xianfu Meng(孟宪福), Bo Cui(崔博), Yaya Qi(祁亚亚), Wei Cai(蔡伟), Jiehe Sui(隋解和). Chin. Phys. B, 2018, 27(4): 048402.
No Suggested Reading articles found!