Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 104201    DOI: 10.1088/1674-1056/ac6edb
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Circular dichroism spectra of α -lactose molecular measured by terahertz time-domain spectroscopy

Chun Wang(王春)1,2, Bo Wang(王博)1,2, Gaoshuai Wei(魏高帅)1,2, Jianing Chen(陈佳宁)1, and Li Wang(汪力)1,†
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Researchers have long studied circular dichroism (CD) for its enormous prospects in life sciences. Many biomolecules have vibration modes in the terahertz region, and terahertz CD spectra are robust to detect biomolecular structures. However, few studies explore the terahertz CD spectra on even natural materials due to technical challenges in both fields. Here, we report a setup of home-built terahertz time-domain spectroscopy to measure the polarization states of terahertz waves. By carefully measuring the transmission Jones matrix, we obtain terahertz CD spectra of α -lactose tablets and D-glucose tablets. Our results show that the terahertz CD spectra are sensitive to vibrational motions in biochemical compounds, which will find wide applications in biosensing and biomedical diagnostics.
Keywords:  circular dichroism      terahertz      α-lactose  
Received:  21 February 2022      Revised:  18 April 2022      Accepted manuscript online: 
PACS:  42.25.Ja (Polarization)  
  42.62.Be (Biological and medical applications)  
  87.64.K- (Spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61775233).
Corresponding Authors:  Li Wang     E-mail:  wangli@aphy.iphy.ac.cn

Cite this article: 

Chun Wang(王春), Bo Wang(王博), Gaoshuai Wei(魏高帅), Jianing Chen(陈佳宁), and Li Wang(汪力) Circular dichroism spectra of α -lactose molecular measured by terahertz time-domain spectroscopy 2022 Chin. Phys. B 31 104201

[1] Barron L D 2009 Molecular Light Scattering and Optical Activity (Cambridge: Cambridge University Press) pp. 1—53
[2] Woody R W 1996 Circular Dichroism and the Conformational Analysis of Biomolecules (Boston: Springer) pp. 25—67
[3] Beychok S 1966 Science 154 1288
[4] Correcirc D H A and Ramos C H I 2009 African J. Biochem. Res. 3 15798EB10962
[5] Greenfield N J 2006 Nat. Protocols 1 2876
[6] Kypr J, Kejnovská I, Renčiuk D and Vorlíčková M 2009 Nucleic Acids Res. 37 1713
[7] Boxer D H, Zhang H, Gourley D G, Hunter W N, Kelly S M and Price N C 2004 Org. Biomol. Chem. 2 2829
[8] Choi W J, Cheng G, Huang Z, Zhang S, Norris T B and Kotov N A 2019 Nat. Mater. 18 820
[9] Choi J H and Cho M 2014 J. Phys. Chem. B 118 12837
[10] Xu J, Galan J, Ramian G, Savvidis P, Scopatz A, Birge R R, Allen S J and Plaxco K 2004 Proc. SPIE 5268 19
[11] Aschaffenburg D J, Williams M R and Schmuttenmaer C A 2016 J. Chem. Phys. 144 174705
[12] Aschaffenburg D J, Williams M R, Talbayev D, Santavicca D F, Prober D E and Schmuttenmaer C A 2012 Appl. Phys. Lett. 100 241114
[13] Kuwata-Gonokami M, Saito N, Ino Y, Kauranen M, Jefimovs K, Vallius T, Turunen J and Svirko Y 2005 Phys. Rev. Lett. 95 227401
[14] Zhang S, Park Y S, Li J, Lu X, Zhang W and Zhang X 2009 Phys. Rev. Lett. 102 023901
[15] Wang Z, Cheng F, Winsor T and Liu Y 2016 Nanotechnology 27 412001
[16] Kong X T, Khosravi Khorashad L, Wang Z and Govorov A O 2018 Nano Lett. 18 2001
[17] Yang S, Liu Z, Hu S, Jin A Z, Yang H, Zhang S, Li J and Gu C 2019 Nano Lett. 19 3432
[18] Fox P F, Uniacke-Lowe T, McSweeney P L H and O'Mahony J A 2015 Lactose. In: Dairy Chemistry and Biochemistry (Springer, Cham) pp. 21—68
[19] Fox P F 2013 Advanced Dairy Chemistry vol. 3 Lactose, Water, Salts and Vitamins (Springer Science and Business Media) p. 5
[20] Roggenbuck A, Schmitz H, Deninger A, Mayorga I C, Hemberger J, Güsten R and Grüninger M 2010 New J. Phys. 12 043017
[21] Kong D Y, Wu X J, Wang B, Gao Y, Dai J, Wang L, Ruan C J and Miao J G 2018 Opt. Express 26 17964
[22] Brown E R, Bjarnason J E, Fedor A M and Korter T M 2007 Appl. Phys. Lett. 90 061908
[23] Berova N, Nakanishi K and Woody R W (eds) 2000 Circular Dichroism: Principles and Applications (New York: John Wiley & Sons)
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!