Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097301    DOI: 10.1088/1674-1056/ac6b2a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell

Yi Li(李依)1, Dong Wei(魏东)2, Gaofu Guo(郭高甫)2, Gao Zhao(赵高)1, Yanan Tang(唐亚楠)1,†, and Xianqi Dai(戴宪起)2,‡
1 School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China;
2 School of Physics, Henan Normal University, Xinxiang 453007, China
Abstract  The rapid development of two-dimensional (2D) materials offers new opportunities for 2D ultra-thin excitonic solar cells (XSCs). The construction of van der Waals heterostructure (vdWH) is a recognised and effective method of integrating the properties of single-layer 2D materials, creating particularly superior performance. Here, the prospects of h-BP/h-BAs vdW heterostructures in 2D excitonic solar cells are assessed. We systematically investigate the electronic properties and optical properties of heterogeneous structures by using the density functional theory (DFT) and first-principles calculations. The results indicate that the heterogeneous structure has good optoelectronic properties, such as a suitable direct bandgap and excellent optical absorption properties. The calculation of the phonon spectrum also confirms the well-defined kinetic stability of the heterstructure. We design the heterogeneous structure as a model for solar cells, and calculate its solar cell power conversion efficiency which reaches up to 16.51% and is higher than the highest efficiency reported in organic solar cells (11.7%). Our work illustrates the potential of h-BP/h-BAs heterostructure as a candidate for high-efficiency 2D excitonic solar cells.
Keywords:  h-BP      h-BAs      two-dimensional heterostructure      solar cell  
Received:  11 March 2022      Revised:  13 April 2022      Accepted manuscript online:  28 April 2022
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Cg (Contact resistance, contact potential)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62074053), the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410237 and 222300420587), the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT030), the Henan Overseas Expertise Introduction Center for Discipline Innovation, China (Grant No. CXJD2019005), the High Performance Computing Center of Henan Normal University, China, and the Aid Program for Science and Technology Innovative Research Team of Zhengzhou Normal University, China.
Corresponding Authors:  Yanan Tang, Xianqi Dai     E-mail:  yntang2010@163.com;xqdai@htu.edu.cn

Cite this article: 

Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起) Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell 2022 Chin. Phys. B 31 097301

[1] Linghu J, Yang T, Luo Y, Yang M, Zhou J, Shen L and Feng Y P 2018 ACS Appl. Mater. Inter. 10 32142
[2] He X, Deng X Q, Sun L, Zhang Z H and Fan Z Q 2022 Appl. Surf. Sci. 578 151844
[3] Chen Y, Zhang X, Qin J and Liu R 2021 Nanoscale 13 13437
[4] Ma Z, Li R, Xiong R, Zhang Y, Xu C, Wen C and Sa B 2021 Materials 14 3768
[5] Gregg B A 2003 J. Phys. Chem. B 107 4688
[6] Novoselova K S, Geims K, Morozovd V, et al. 2004 Science 306 666
[7] Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225
[8] Xu R, Zou X, Liu B and Cheng H 2018 Mater. Today 21 391
[9] Liang Q, Jiang J, Meng R, Ye H, Tan C, Yang Q, Sun X, Yang D and Chen X 2016 Phys. Chem. Chem. Phys. 18 16386
[10] Rehman M U, Hua C and Lu Y 2020 Chin. Phys. B 29 057304
[11] Lu Y, Xu W, Zeng M, Yao G, Shen L, Yang M, Luo Z, Pan F, Wu K, Das T, He P, Jiang J, Martin J, Feng Y P, Lin H and Wang X 2015 Nano Lett. 15 80
[12] Xiao C, Wang F, Yang S A, Lu Y, Feng Y and Zhang S 2018 Adv. Funct. Mater. 28 1707383
[13] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[15] Fontana M, Deppe T, Boyd A K, Rinzan M, Liu A Y, Paranjape M and Barbara P 2013 Sci. Rep. 3 1634
[16] Yuan H, Bahramy M S, Morimoto K, Wu S and Iwasa Y 2013 Nat. Phys. 9 563
[17] Parzinger E, Miller B, Blaschke B, Garrido J A and Wurstbauer U 2015 ACS Nano 9 11302
[18] Kennefick D 2005 Phys. Today 58 43
[19] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111
[20] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S and Li L J 2012 Adv. Mater. 24 2320
[21] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 6298
[22] Cheng W, Zhou Z, Pan M, Yang H, Xie Y, Wang B, Zhan Q and Li R W 2018 J. Phys. D:Appl. Phys. 52 095003
[23] Wang X and Xia F 2015 Nat. Mater. 14 264
[24] Li X, Zhang S, Peng W, Zhong H and Lin S 2015 Nano Energy 16 310
[25] Bernardi M, Palummo M and Grossman J C 2012 ACS Nano 6 10082
[26] Eren S, Ozen S, Sozen Y, Yagmurcukardes M and Sahin H 2019 J. Phys. Chem. C 123 31232
[27] Withers F, Pozo-Zamudio O D, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K and Tartakovskii A I 2015 Nat. Mater. 14 301
[28] Wei D, Li Y, Feng Z, Ma Y, Tang Y and Dai X 2022 Physica E 135 114973
[29] Li Y, Feng Z, Sun Q, Ma Y, Tang Y and Dai X 2021 Results Phys. 23 104010
[30] Kang J S, Wu H and Hu Y 2017 Nano Lett. 17 7507
[31] Gui R, Xue Z, Zhou X, Gu C, Ren X, Cheng H, Ma D, Qin J, Liang Y, Yan X, Zhang J, Zhang X, Yu X, Wang L, Zhao Y and Wang S 2020 Phys. Rev. B 101 035302
[32] Xie M, Zhang S, Cai B, Zhu Z, Zou Y and Zeng H 2016 Nanoscale 8 13407
[33] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2007 Phys. Rev. Lett. 100 16602
[34] Broido D A, Lindsay L and Reinecke T L 2013 Phys. Rev. B 88 142
[35] Kang J S, Li M, Wu H, Nguyen H and Hu Y 2018 Science 361 575
[36] Fellet and Melissae 2018 MRS Bull. 43 727
[37] Khossossi N, Panda P K, Singh D, Shukla V and Ahuja R 2020 ACS Appl. Energy Mater. 3 7306
[38] Wang S, Swingle S F, Ye H, Fan F R F, Cowley A H and Bard A J 2012 J. Am. Chem. Soc. 134 11056
[39] Dai X, Zhang X and Li H 2020 Appl. Surf. Sci. 507 144923
[40] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 77 3865
[41] Blochl P E 1994 Phys. Rev. B 50 17953
[42] Kresse G G and Furthmüller J J 1996 Phys. Rev. B 54 11169
[43] Marsman M, Paier J, Stroppa A and Kresse G 2008 J. Phys.:Condens. Matter 20 64201
[44] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[45] Bermudez A, Jelezko F, Plenio M and Retzker A 2011 Phys. Rev. Lett. 107 150503
[46] Alfé D 2009 Comput. Phys. Commun. 180 2622
[47] Raeisi M, Ahmadi S and Rajabpour A 2019 Nanoscale 11 21799
[48] Shu H, Zhao M and Sun M 2019 ACS Appl. Nano Mater. 2 6482
[49] Mohanta M K, Rawat A, Jena N, Dimple, Ahammed R and De Sarkar A 2020 ACS Appl. Mater. Interf. 12 3114
[50] Munive Hernández O, Guerrero-Sánchez J, Ponce-Pérez R, García Díaz R, Fernandez-Escamilla H N and Cocoletzi G H H 2021 Appl. Surf. Sci. 538 148163
[51] Xia C, Du J, Huang X, Xiao W, Xiong W, Wang T, Wei Z, Jia Y, Shi J and Li J 2018 Phys. Rev. B 97 115416
[52] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W and Yan H 2016 Nat. Energy 1 15027
[53] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111
[54] Kaur S, Kumar A, Srivastava S, Tankeshwar K and Pandey R 2018 J. Phys. Chem. C 122 26032
[55] Wei D, Li Y, Feng Z, Guo G, Ma Y, Yu H, Luo Q, Tang Y and Dai X 2021 Chin. Phys. B 30 117103
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[3] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[4] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[5] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[6] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[7] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[8] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[9] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[10] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[11] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[12] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[13] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[14] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
[15] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
No Suggested Reading articles found!