Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 096102    DOI: 10.1088/1674-1056/ac6b25

Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃

Chun-Yang Luo(罗春阳)1,2,†, Bo Cui(崔博)1,†, Liu-Jie Xu(徐流杰)2,‡, Le Zong(宗乐)2, Chuan Xu(徐川)3, En-Gang Fu(付恩刚)3, Xiao-Song Zhou(周晓松)1, Xing-Gui Long(龙兴贵)1, Shu-Ming Peng(彭述明)1, Shi-Zhong Wei(魏世忠)2, and Hua-Hai Shen(申华海)1,2,§
1 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
2 National&Local Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, China;
3 Institute of Heavy Ion Research, Peking University, Beijing 100871, China
Abstract  Microstructure evolution and hardening effect of pure tungsten and W-1.5%ZrO2 alloy under carbon ion irradiation are investigated by using transmission electron microscopy and nano-indentation. Carbon ion irradiation is performed at 700 ℃ with irradiation damages ranging from 0.25 dpa to 2.0 dpa. The results show that the irradiation defect clusters are mainly in the form of dislocation loop. The size and density of dislocation loops increase with irradiation damages intensifying. The W-1.5%ZrO2 alloy has a smaller dislocation loop size than that of pure tungsten. It is proposed that the phase boundaries have the ability to absorb and annihilate defects and the addition of ZrO2 phase improves the sink strength for irradiation defects. It is confirmed that the W-1.5%ZrO2 alloy shows a smaller change in hardness than the pure tungsten after being irradiated. From the above results, we conclude that the addition of ZrO2 into tungsten can significantly reduce the accumulation of irradiated defects and improve the irradiation resistance behaviors of the tungsten materials.
Keywords:  W-ZrO2 alloy      carbon ion irradiation      microstructure      surface hardness  
Received:  20 February 2022      Revised:  18 April 2022      Accepted manuscript online:  28 April 2022
PACS:  61.82.Bg (Metals and alloys)  
  61.80.Lj (Atom and molecule irradiation effects)  
  61.80.-x (Physical radiation effects, radiation damage)  
  62.20.Qp (Friction, tribology, and hardness)  
Fund: Project supported by the President's Foundation of the China Academy of Engineering Physics (Grant No. YZJJLX2018003), the National Natural Science Foundation of China (Grant Nos. U2004180 and 12105261), and the Program for Changjiang Scholars and Innovative Research Team in Universities, China (Grant No. IRT1234).
Corresponding Authors:  Liu-Jie Xu, Hua-Hai Shen     E-mail:;

Cite this article: 

Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海) Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃ 2022 Chin. Phys. B 31 096102

[1] Ongena J and Ogawa Y C 2016 Energy Policy 96 700
[2] Tanabe T, Wada M, Ohgo T, Philipps V and Schweer B 2000 J. Nucl. Mater. 283 1128
[3] Aymar R 2002 Fusion Engineering and Design 61 5
[4] Matera R and Federici G 1996 J. Nucl. Mater. 233-237 17
[5] Pitts R A, Carpentier S, Escourbiac F, Hirai T, Komarov V, Kukushkin A S, Lisgo S, Loarte A, Merola M and Mitteau R 2011 J. Nucl. Mater. 415 S957
[6] Maisonnier D, Cook L, Pierre S, Lorenzo B, Di P L, Luciano G, Prachai N and Aldo P 2006 Fusion Engineering & Design 81 1123
[7] Rieth M, Armstrong D, Dafferner B, Heger S, Hoffmann A, Hoffmann M D, Jantsch U, Kübel C, Edeltraud M M, Jens R, Magnus R, Torsten S, Verena W and Horst Z 2010 Adv. Sci. Technol. 73 11
[8] Wu Y C 2019 Acta Metallurgica Sinica 55 939
[9] Shimada M, Hatano Y, Calderoni P, Oda T, Oya Y, Sokolov M, Zhang K, Cao G, Kolasinski R and Sharpe J P 2011 J. Nucl. Mater. 415 S667
[10] Fukuda M, Yabuuchi K, Nogami S, Hasegawa A and Tanaka T 2014 J. Nucl. Mater. 455 460
[11] Tanno T, Hasegawa A, He J C, Fujiwara M, Nogami S, Satou M, Shishido T and Abe K 2007 Mater. Trans. 48 2399
[12] Rieth M and Dudarev S 2013 J. Nucl. Mater. 442 S172
[13] Riesch J, Han Y, Almanstotter J, Coenen J W, Hoschen T, Jasper B, Zhao P, Linsmeier C and Neu R 2013 Phys. Scr. 2013 014006
[14] Li Z, Xu L J, Wei S Z, Chen C and Xiao F N 2018 J. Alloys Compd. 769 694
[15] Das S, Yu H, Mizohata K, Tarleton E and Hofmann F 2019 135
[16] Huang H F, Gao J, Radiguet B, Liu R D, Li J J, Lei G H, Huang Q, Liu M and Xie R B 2018 J. Nucl. Mater. 499 431
[17] Nix W D and Gao H 1998 J. Mech. Phys. Solids 46 411
[18] Pharr G M, Herbert E G and Gao Y F 2010 Annu. Rev. Mater. Res. 40 271
[19] Guo L P, Luo F F and Yu Y X 2017 Dislocation Loops in Irradiated Nuclear Materials (Beijing:National Defense Industry Press) p. 114
[20] Lu C Y, Lu Z, Wang X, Xie R, Li Z Y, Higgins M, Liu C M, Gao F and Wang L M 2017 Sci. Rep. 7 40343
[21] Sun C, Bufford D, Chen Y, Kirk M A, Wang Y Q, Li M, Wang H, Maloy S A and Zhang X 2014 Sci. Rep. 4 3737
[22] Takayama Y, Kasada R, Sakamoto Y, Yabuuchi K and Tanigawa H 2013 J. Nucl. Mater. S442 23
[23] Kasada R, Takayama Y, Yabuuchi K and Kimura A 2011 Fusion Engineering & Design 86 2658
[24] Huang H F, Li J J, Li D H, Liu R D, Lei G H, Huang Q and Yan L 2014 J. Nucl. Mater. 454 168
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可), and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[3] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[4] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[5] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[6] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[7] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[8] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[9] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[10] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[11] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[12] Accurate prediction method for the microstructure of amorphous alloys without non-metallic elements
Wei Zhao(赵伟), Jia-Lin Cheng(成家林), Gong Li(李工), and Xin Wang(王辛). Chin. Phys. B, 2021, 30(11): 116103.
[13] Hydrogen isotopic replacement and microstructure evolution in zirconium deuteride implanted by 150 keV protons
Man Zhao(赵嫚), Mingxu Zhang(张明旭), Tao Wang(王韬), Jiangtao Zhao(赵江涛), Pan Dong(董攀), Zhen Yang(杨振), and Tieshan Wang(王铁山). Chin. Phys. B, 2021, 30(10): 106104.
[14] Electrically-manipulable electron-momentum filter based on antiparallel asymmetric double δ-magnetic-barrier semiconductor microstructure
Ge Tang (唐鸽), Ying-Jie Qin(覃英杰), Shi-Shi Xie(谢诗诗), and Meng-Hao Sun(孙梦豪). Chin. Phys. B, 2021, 30(10): 107303.
[15] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
No Suggested Reading articles found!