Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 090303    DOI: 10.1088/1674-1056/ac67c0
GENERAL Prev   Next  

Probabilistic quantum teleportation of shared quantum secret

Hengji Li(李恒吉)1,4, Jian Li(李剑)2,3,†, and Xiubo Chen(陈秀波)2
1 School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 The Laboratory of Cryptography of Zhejiang Province, Hangzhou 311121, China;
4 Quantum Technology Laboratory and Applied Mechanics Group, University of Milan, Milan 20133, Italy
Abstract  Very recently, Lee et al. proposed a secure quantum teleportation protocol to transfer shared quantum secret between multiple parties in a network[Phys. Rev. Lett. 124 060501 (2020)]. This quantum network is encoded with a maximally entangled GHZ state. In this paper, we consider a partially entangled GHZ state as the entanglement channel, where it can achieve, probabilistically, unity fidelity transfer of the state. Two kinds of strategies are given. One arises when an auxiliary particle is introduced and a general evolution at any receiver's location is then adopted. The other one involves performing a single generalized Bell-state measurement at the location of any sender. This could allow the receivers to recover the transmitted state with a certain probability, in which only the local Pauli operators are performed, instead of introducing an auxiliary particle. In addition, the successful probability is provided, which is determined by the degree of entanglement of the partially multipartite entangled state. Moreover, the proposed protocol is robust against the bit and phase flip noise.
Keywords:  probabilistic quantum teleportation      shared quantum secret      partially entangled GHZ state  
Received:  17 January 2022      Revised:  04 March 2022      Accepted manuscript online:  18 April 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province, China (Grant No. SKLACSS-202108), the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province, China (Grant No. ZCL21006), the National Natural Science Foundation of China (Grant Nos. U1636106, 92046001, 61671087, 61962009, and 61170272), the BUPT Excellent Ph.D. Students Foundation (Grant No. CX2020310), Natural Science Foundation of Beijing Municipality, China (Grant No. 4182006), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2019XD-A02).
Corresponding Authors:  Jian Li     E-mail:

Cite this article: 

Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波) Probabilistic quantum teleportation of shared quantum secret 2022 Chin. Phys. B 31 090303

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[3] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641
[4] Lee S M, Lee S W, Jeong H and Park H S 2020 Phys. Rev. Lett. 124 060501
[5] Kimble H J 2008 Nature 453 1023
[6] Cacciapuoti A S, Caleffi M, Meter R V and Hanzo L 2020 IEEE Transact. Commu. 68 3808
[7] Pfaff W, Hensen B J, Bernien H, Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J and Hanson R 2014 Science 345 532
[8] Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, Zeilinger A and Pan J W 2019 Phys. Rev. Lett. 123 070505
[9] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[10] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[11] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[12] Dou Z, Xu G, Chen X B, Liu X and Y Y X 2018 Sci. China Inf. Sci. 61 022501
[13] Lee J Y and Kim M S 2000 Phys. Rev. Lett. 84 4236
[14] Ghosh S, Kar G, Roy A, Sarkar D and Sen U 2002 New J. Phys. 4 48
[15] Li Y H, He L M and Zhou P 2021 Int. J. Theor. Phys. 60 1635
[16] Wang C, Zeng Z and Li X H 2015 Quantum Information Proc. 14 1077
[17] Gong N F, Wang T J and Ghose S 2021 Phys. Rev. A 103 052601
[18] Ekert A K 1991 Phys. Rev. Lett. 67 661
[19] Zhou C, Wang X Y, Zhang Z G, Yu S, Chen Z Y and Guo H 2021 Sci. China Phys. Mech. Astron. 64 1
[20] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[21] Gao Z K, Li T and Li Z H 2020 Sci. China Phys., Mech. Astron. 63 1
[22] Yang Y G, Wang Y C, Yang Y L, Chen X B, Li Dan, Zhou Y H and Shi W M 2021 Sci. China Phys., Mech. Astron. 64 1
[23] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[24] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[25] Ren B C, Wang H, Alzahrani F, Hobiny A and Deng F G 2017 Ann. Phys. 385 86
[26] Pant M, Krovi H, Towsley D, Tassiulas L, Jiang L, Basu P, Englund D and Guha S 2019 npj Quantum Inf. 5 1
[27] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Modern Phys. 81 865
[28] Schlosshauer M 2019 Phys. Rep. 831 1
[29] Lipinska V, Murta G and Wehner S 2018 Phys. Rev. A 98 052320
[30] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[31] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[32] Li W L, Li C F and Guo G C 2000 Phys. Rev. A 61 034301
[33] Agrawal P and Pati A K 2002 Phys. Lett. A 305 12
[34] Lütkenhaus N, Calsamiglia J and Suominen K A 1999 Phys. Rev. A 59 3295
[35] Calsamiglia J and Lütkenhaus N 2001 Appl. Phys. B 72 67
[36] Lee S W, Park K, Ralph T C and Jeong H 2015 Phys. Rev. Lett. 114 113603
[37] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[38] Rungta P, Bužek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315
[39] Bandyopadhyay S and Sanders B C 2006 Phys. Rev. A 74 032310
[40] Werner R F 1989 Phys. Rev. A 40 4277
[41] Horodecki M, Horodecki P and Horodecki R 1999 Phys. Rev. A 60 1888
[42] Shapira D, Mozes S and Biham O 2003 Phys. Rev. A 67 042301
[1] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[2] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[3] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[4] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[5] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[6] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[7] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[8] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[9] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[10] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[11] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[12] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[13] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[14] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[15] Constructing the three-qudit unextendible product bases with strong nonlocality
Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Chin. Phys. B, 2022, 31(6): 060302.
No Suggested Reading articles found!