Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 028201    DOI: 10.1088/1674-1056/ac65f4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes

Di Wang(汪迪)1, Qiao Zhou(周悄)1,2,†, Qiang Wei(魏强)3, and Peng Song(宋朋)1,‡
1 Department of Physics, Liaoning University, Shenyang 110036, China;
2 College of Mathematics and Information Engineering, Chongqing University of Education, Chongqing 400065, China;
3 School of Science, Chongqing University of Technology, Chongqing 400050, China
Abstract  Excited-state intramolecular proton transfer (ESIPT) molecules are broadly applied to UV absorbers, fluorescence sensing, and lighting materials. In previous work, the fluorescence colors of oxazoline-substituted hydroxyfluorenes and hydroxylated benzoxazole were diversified by adding the π-conjugation. There is intriguing that the mechanism of diversified fluorescence colors induced by ESIPT. Here, the density functional theory (DFT) and time-dependent DFT (TDDFT) are advised to identify the effects of π-conjugation on ESIPT and photophysical properties. The stabilized geometrical configurations, frontier molecular orbitals (FMOs) isosurfaces, and O-H stretching vibration frequency analysis demonstrate that PT processes are more active in S1 state. Constructing the minimum energy pathways of ESIPT processes, we find that the calculated peak of enol and keto fluorescence of naphthoxazole (NO-OH) is distinctly bathochromic-shift relative to the oxazoline-substituted hydroxyfluorenes (Oxa-OH) configuration when adding π-conjugation-substitution, and it means that π-conjugation-substitution can diversify the fluorescence color. We hope our studies can establish new channels to devise the ESIPT-based molecules.
Keywords:  density functional theory (DFT) and time-dependent DFT (TDDFT)      excited-state proton transfer      intramolecular hydrogen bonding      π -conjugation-substitution  
Received:  06 February 2022      Revised:  08 April 2022      Accepted manuscript online:  11 April 2022
PACS:  82.39.Jn (Charge (electron, proton) transfer in biological systems)  
  31.15.ee (Time-dependent density functional theory)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974152), the Shenyang High level Innovative Talents Program (Grant No. RC200565), the Science program of Liaoning Provincial Department of Education (Grant No. LJKZ0097), the Intercollegiate cooperation project of colleges and universities of Liaoning Provincial Department of Education.
Corresponding Authors:  Qiao Zhou, Peng Song     E-mail:  zhouq@cque.edu.cn;songpeng@lnu.edu.cn

Cite this article: 

Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋) Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes 2023 Chin. Phys. B 32 028201

[1] Yu F B, Li P, Li G Y, Zhao G Y, Chu T S and Han K L 2011 J. Am. Chem. Soc. 133 11030
[2] Li Y Z, Li Y C, Song P, Ma F C, Liang J P and Sun M T 2017 Rsc. Adv. 7 20520
[3] Alyaninezhad Z, Bekhradnia A, Feizi N, Arshadi S and Zibandeh M 2019 Spectrochim. Acta, Part A. 212 32
[4] Pallavi P, Kumar V, Hussain M W and Patra A 2018 ACS Appl. Mater. Interfaces 10 44696
[5] Sun M T 2006 J. Chem. Phys. 124 6049
[6] Zhao J, Dong H and Zheng Y 2018 J. Phys. Chem. A 122 1200
[7] Zhou Q, Du C, Yang L, Zhao M Y, Dai Y M and Song P 2017 J. Phys. Chem. A 121 4645
[8] Weller A 1955 Naturwissenschaften 42 175
[9] Kukura P, McCamant D W and Mathies R A 2007 Rev. Phys. Chem. 58 461
[10] Chou P T, Chen Y C, Yu W S, Chou Y H, Wei C Y and Cheng Y M 2001 J. Phys. Chem. A 105 1731
[11] Ameer-Beg S, Ormson S M, Brown R G, Matousek P, Towrie M, Nibbering E T J, Foggi P and Neuwahl F V R 2001 J. Phys. Chem. A 105 3709
[12] Lim S J, Seo J and Park S Y 2006 J. Am. Chem. Soc. 128 14542
[13] Wei Q and Zhou Q 2017 J. Lumin. 83 7
[14] Liu X C, Yin H, Li H and Shi Y 2017 Acta Part A 177 1
[15] Cardoso M B, Samios D, da Silveira N P, Rodembusch F S and Stefani V 2007 Photochem.Photobiol. Sci. 6 99
[16] Sun L, Chen Y and Sun M T 2021 J. Phys. Chem. C 126 487
[17] Keshav K, Kumawat M K, Srivastava R and Ravikanth M 2017 Mater. Chem. Front. 1 1207
[18] Wang D J, Fan X P, Sun S G, Du S Z, Lia H J, Zhu J L, Tang Y F, Chang M X and Xu Y Q 2018 Sensors Act. B 264 304
[19] Tordo A, Jeanneau E, Bordy M, Bretonniére Y and Hasserodt J 2021 J. Mater. Chem. C 9 12727
[20] Gobel D, Rusch P, Duvinage D, Bigall N C and Nachtsheim B J 2020 Chem. Commun. 56 5430
[21] Chlegel H B 1982 J. Comput. Chem. 3 214
[22] Su S and Fang H 2020 Spectrochim Acta A Mol. Biomol. Spectrosc. 233 118214
[23] Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09, Revision B. 02; Gaussian, Inc., Wallingford, CT
[24] Becke A D 1993 J. Chem. Phys. 98 5648
[25] Marciniak H, Hristova S, Deneva V, Kamounah F S, Hansen P E, Lochbrunner S and Antonov L 2017 Phys. Chem. Chem. Phys. 19 26621
[26] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
[27] Lee C T, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[28] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[29] Lu T and Chen F 2012 Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological 33 580
[30] Barboza C A and Sobolewski A L 2018 Phys. Chem. Chem. Phys. 20 25164
[31] Yu F B, Li P, Wang B S and Han K L 2013 J. Am. Chem. Soc. 20 7674
[32] Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404
[33] Wang H B, Zhao D P, Song P, Ma F C and Li Y Z 2020 J. Mol. Liq. 303 112594
[34] Li D L, Li C Z and Liu Y F 2016 J. Mol. Liq. 218 670
[35] Chen J R, Yu T, Ubba E, Xie Z L, Yang Z Y, Zhang Y, Liu S W, Xu J R, Aldred M P and Chi Z G 2019 Adv. Opt. Mater. 7 1801593
[36] Borole A P and Lewis A J 2017 Sustainable Energy Fuels. 1 725
[37] Han J H, Cao B F, Zhang X, Su X, Diao L H, Yin H and Shi Y 2020 J. Mol. Liq. 306 112894
[38] Li Y, Liu X C, Han J H, Cao B F, Sun C F, Diao L H, Yin H and Shi Y 2019 Acta Part A 222 117244
[1] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[2] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[3] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[4] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[5] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[6] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[7] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[8] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[9] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[10] Label-free surface-enhanced infrared spectro-electro-chemical analysis of the Redox potential shift of cytochrome c complexed with a cardiolipin-containing lipid membrane of varied composition
Liu Li (刘丽), Wu Lie (武烈), Zeng Li (曾丽), Jiang Xiu-E (姜秀娥). Chin. Phys. B, 2015, 24(12): 128201.
[11] Photo-induced intramolecular electron transfer and intramolecular vibrational relaxation of rhodamine 6G in DMSO revealed by multiplex transient grating spectroscopy
Jiang Li-Lin (蒋礼林), Liu Wei-Long (刘伟龙), Song Yun-Fei (宋云飞), Sun Shan-Lin (孙山林). Chin. Phys. B, 2014, 23(10): 107802.
[12] A switch in the electron transfer from heme a to binuclear centre of cytochrome c oxidase
Wang Ao-Jin (王敖金), Xu Jian-Xing (徐建兴). Chin. Phys. B, 2002, 11(5): 506-508.
No Suggested Reading articles found!