Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 086105    DOI: 10.1088/1674-1056/ac6165

Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases

Xiangyizheng Wu(吴祥议政)1,2,4, Jian Xu(徐健)1,2,3,†, Keling Gong(龚柯菱)1,2,3, Chongfeng Shao(邵崇峰)1,2,3, Yang Kou(寇洋)1,2,3, Yuxuan Zhang(张宇轩)1,2,4, Yong Bo(薄勇)1,2,3,‡, and Qinjun Peng(彭钦军)1,2,3
1 Key Laboratory of Solid-State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
3 Institute of Optical Physics and Engineering Technology, Qilu Zhongke, Jinan 250000, China;
4 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  High-power laser induced thermal blooming effects in a closed chamber with three different gases are investigated theoretically and experimentally in this work. In the theoretical treatment, an incompressible gas turbulent model is adopted. In the numerical simulation the gas refractive index as a function of both the temperature and pressure is taken into consideration. In the experimental study the pump-probe technology is adopted. A high-power 1064-nm fiber laser with maximum output power of 12 kW is used to drive the gas thermal blooming, and a 50-mW high-beam-quality 637-nm laser diode (LD) is used as a probe beam. The influences of the gas thermal blooming in the chamber on the probe beam wavefront and beam quality are analyzed for three different gases of air, nitrogen, and helium, respectively. The results indicate that nitrogen is well suitable for restraining thermal blooming effect for high-power laser. The measured data are in good agreement with the simulated results.
Keywords:  laser radiation      numerical simulation      propagation      thermal blooming  
Received:  11 January 2022      Revised:  22 March 2022      Accepted manuscript online:  28 March 2022
PACS:  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
  44.05.+e (Analytical and numerical techniques)  
  44.10.+i (Heat conduction)  
  47.27.-i (Turbulent flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61875208).
Corresponding Authors:  Jian Xu, Yong Bo     E-mail:;

Cite this article: 

Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军) Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases 2022 Chin. Phys. B 31 086105

[1] Gong K L, Xu J, Zhang L, Guo Y D, Wang B S, Yang L, Li S, Chen Z Z, Yuan L, Kou Y, Xu Y T, Peng Q J and Xu Z Y 2019 Chin. Phys. Lett. 36 074204
[2] Lu L, Wang Z Q, Zhang P F, Qiao C H and Cai Y J 2021 Opt. Lett. 46 4304
[3] Zhu W Y, Qian X M, Rao R Z and Wang H H 2019 Infrared and Laser Engineering 48 12 (in Chinese)
[4] Rieckhoff K E 1966 Appl. Phys. Lett. 9 87
[5] Valley G C, Shen L W and Kelly R E 1979 Appl. Opt. 18 2728
[6] McClellan C, Munn M W and Nourie D 1979 Appl. Opt. 18 3984
[7] Albertine J R, Siahatgar S and Bennett H E 1997 Proc. SPIE 2988 257
[8] Shen P I and Andrepont M 2000 Proc. SPIE 4034 100
[9] Benjamin F A and Jonah A R 2019 J. Electromagn. Waves Appl. 33 96
[10] Liu J and Wang S Q 2011 Adv. Mater. Res. 354-355 165
[11] Kanev F, Makenova N, Nesterov R and Izmailov I 2016 Mater. Sci. Eng. 124 012063
[12] Yu H H, Hu P, An J Z and Zhang F Z 2015 Proc. SPIE 9255 92552Z-1
[13] Zu F Y, Wang J H, Ren G, Tan Y F, Zhu N B and Ai Z W 2016 Proc. SPIE 9682 96820T-1
[14] Peck E R and Khanna B N 1996 J. Opt. Soc. Am. 56 1059
[15] Zhang J, Liu Z H and Wang L J 2008 Appl. Opt. 47 3143
[16] Mansfield C R and Peck E R 1969 J. Opt. Soc. Am. 59 199
[17] Bonsch G and Potulski E 1998 Metrologia 35 133
[18] Zhang J, Lu Z H, Menegozzi B and Wang L J 2006 Rev. Sci. Instrum. 77 083104
[19] Wang Y J, Fan C Y and Wei H L 2015 Laser Beam Propagation and Applications through the Atmosphere and Sea Water (Beijing:Nation Defense Industry Press) pp. 312-313 (in Chinese)
[1] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[2] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[3] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[4] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[5] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[8] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[9] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[10] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[11] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[12] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[13] Propagation dynamics of dipole breathing wave in lossy nonlocal nonlinear media
Jian-Li Guo(郭建丽), Zhen-Jun Yang(杨振军), Xing-Liang Li(李星亮), and Shu-Min Zhang(张书敏). Chin. Phys. B, 2022, 31(1): 014203.
[14] Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes
Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010304.
[15] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
No Suggested Reading articles found!