Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 065205    DOI: 10.1088/1674-1056/ac601a
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure

Junyu Chen(陈俊宇)1, Na Zhao(赵娜)1,2, Jiacun Wu(武珈存)1, Kaiyue Wu(吴凯玥)1, Furong Zhang(张芙蓉)1, Junxia Ran(冉俊霞)1, Pengying Jia(贾鹏英)3, Xuexia Pang(庞学霞)3, and Xuechen Li(李雪辰)1,3,†
1 College of Physics Science&Technology, Hebei University, Baoding 071002, China;
2 School of Mathematics and Physics, Handan University, Handan 056005, China;
3 Institute of Life Science&Green Development, Hebei University, Baoding 071002, China
Abstract  Plasma jet is an important low-temperature plasma source in extensive application fields. To promote the production of active oxygen species, oxygen is often introduced into the inert working gas. However, the influence of oxygen content on the discharge characteristics of an argon plasma jet is not clear. Aim to this status, an argon plasma jet in a single-electrode geometry is employed to investigate the influence of oxygen concentration (CO) on discharge aspects. Results indicate that with increasing CO (≤ 0.6%), the plume transits from a diffuse morphology to a hollow structure. Electrical and optical measurements reveal that both discharge number per voltage cycle and pulse intensity alter with varying CO. Moreover, discharge morphologies of negative and positive discharges obtained by fast photograph also shift with varying CO. Besides, optical emission spectra are collected to investigate atomic CO, electron density, and electron temperature. The results mentioned above are explained qualitatively, which are believed to be of great significance for the applications of atmospheric pressure plasma jet.
Keywords:  plasma jet      oxygen addition      fast photography      optical emission spectra  
Received:  24 January 2022      Revised:  22 February 2022      Accepted manuscript online:  23 March 2022
PACS:  52.80.Tn (Other gas discharges)  
  52.50.Dg (Plasma sources)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51977057 and 11875121), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2020201025 and A2019201100), the Natural Science Interdisciplinary Research Program of Hebei University (Grant Nos. DXK202011 and DXK201908), Post-graduate's Innovation Fund Project of Hebei Province, China (Grant Nos. CXZZBS2019023 and CXZZBS2019029), and Postgraduate's Innovation Fund Project of Hebei University (Grant Nos. HBU2021ss063 and HBU2021bs011).
Corresponding Authors:  Xuechen Li     E-mail:  plasmalab@126.com,xcli@mail.hbu.edu.cn

Cite this article: 

Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰) Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure 2022 Chin. Phys. B 31 065205

[1] Lu X P, Naidis G V, Laroussi M, Reuter S, Graves D B and Ostrikov K 2016 Phys. Rep. 630 1
[2] Zhao N, Wu K Y, Chen J Y, Jia P Y and Li X C 2021 Spectrosc. Spect. Anal. 41 2644
[3] Dou S, Tao L, Wang R L, Hankari S E, Chen R and Wang S Y 2018 Adv. Mater. 30 1705850
[4] Zhang Y T, Guo Y, Wang D W, Feng Y and Ma T C 2010 Chin. Phys. Lett. 27 068201
[5] Liu Y F, Han J M, Zhang G L, Wang J L, Li M, Yang W B, Liu C Z, Li H Q and Yang S Z 2004 Chin. Phys. Lett. 21 1314
[6] Wang R X, Zhang C, Liu X, Xie Q, Yan P and Tao S 2015 Appl. Surf. Sci. 328 509
[7] Wu J C, Wu K Y, Chen J Y, Song C H, Jia P Y and Li X C 2021 Plasma Sci. Technol. 23 085504
[8] Shi Y C, Li J J, Liu H, Zuo Y G, Bai Y, Sun Z F, Ma D L and Chen G C 2015 Chin. Phys. Lett. 32 088104
[9] Wu M, Uehara S, Wu J, Xiao Y C, Nakajima T and Sato T 2020 J. Phys. D 53 485201
[10] Li X C, Wang B, Jia P Y, Yang L W, Li Y R and Chu J D 2017 Plasma Sci. Technol. 19 115505
[11] Shao T, Wang R X, Zhang C and Yan P 2018 High Volt. 3 14
[12] Nicol M J, Brubaker T R, Honish B J, Simmons A N, Kazemi A, Geissel M A, Whalen C T, Siedlecki C A, Bilén S G, Knecht S D and Kirimanjeswara G S 2020 Sci. Rep. 10 3066
[13] Fan Z Q, Zhong J Y, Li Z W, Zheng Y C, Wang Z Z and Bai S P 2021 J. Phys. D 54 455204
[14] Zhang R, Yu J S, Huang J, Chen G L, Liu X, Chen W, Wang X Q and Li C R 2018 Chin. Phys. B 27 055207
[15] Ning W J, Dai D and Zhang Y H 2019 Appl. Phys. Lett. 114 054104
[16] Athanasopoulos D, Svarnas P, Ladas S, Kennou S and Koutsoukos P 2018 Appl. Phys. Lett. 112 213703
[17] Cheng C, Shen J, Xiao D Z, Xie H B, Lan Y, Fang S D, Meng Y D and Paul K C 2014 Chin. Phys. B 23 075204
[18] Walsh J L, Iza F, Janson N B, Law V J and Kong M G 2010 J. Phys. D 43 075201
[19] Teschke M, Kedzierski J, Finantu-Dinu E G, Korzec D and Engemann J 2005 IEEE Trans. Plasma Sci. 2 310
[20] Lu X P and Laroussi M 2006 J. Appl. Phys. 100 063302
[21] Li S Z, Huang W T, Zhang J L and Wang D Z 2009 Appl. Phys. Lett. 94 111501
[22] Pinchuk M E, Stepanova O M, Astafiev A M, Lazukin A V and Chen Z Q 2019 Appl. Phys. Lett. 114 194103
[23] Xiong Q, Lu X P, Ostrikov K, Xiong Z, Xian Y, Zhou F, Zou C, Hu J, Gong W and Jiang Z 2009 Phys. Plasmas 16 043505
[24] Lu X P, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123
[25] Abdelaziz A A and Kim H H 2021 Plasma Process. Polym. 18 2000190
[26] Abdelaziz A A, Teramoto Y and Kim H H 2022 J. Phys. D 55 065201
[27] Li X C, Lin X T, Wu K Y, Jia P Y, Dong L F and Ran J X 2018 Plasma Process. Polym. 15 1700224
[28] Li X C, Lin X T, Wu K Y, Ren C H, Liu R and Jia P Y 2019 Plasma Sources Sci. Technol. 28 055006
[29] Li X C, Chen J Y, Lin X T, Wu J C, Wu K Y and Jia P Y 2020 Plasma Sources Sci. Technol. 29 065015
[30] Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q and Li X C 2021 Phys. Plasmas 28 073501
[31] Engeln R, Klarenaar B and Guaitella O 2020 Plasma Sources Sci. Technol. 29 063001
[32] Li X C, Chen J Y, Wu K Y, Wu J C, Zhang F R, Zhao N, Jia P Y, Yin Z Q, Wang Y J and Ren C H 2021 Phys. Plasmas 28 103507
[33] Zhao N, Wu K Y, He X R, Chen J Y, Tan X, Wu J C, Ran J X, Jia P Y and Li X C 2022 J. Phys. D 55 015203
[34] Brisset A, Gibson A R, Schröter S, Niemi K, Booth J, Gans T, O'Connell D and Wagenaars E 2021 J. Phys. D 54 285201
[35] Han X, Liu D X, Wang W T, Liu Z J, Guo L, Rong M Z and Kong M G 2018 Phys. Plasmas 25 113506
[36] Fang Z, Zhou Y D and Yao Z Q 2014 IEEE Trans. Plasma Sci. 42 2618
[37] Thiyagarajan M, Sarani A and Nicula C 2013 J. Appl. Phys. 113 233302
[38] Kimura T and Noto M 2006 J. Appl. Phys. 100 063303
[39] Li J, Lei B Y, Wang J, Xu B P, Ran S, Wang Y S, Zhang T Y, Tang J, Zhao W and Duan Y X 2021 Commun. Phys. 4 64
[40] Fang Z, Ruan C, Shao T and Zhang C 2016 Plasma Sources Sci. Technol. 25 01LT01
[41] Wang S, Schulz-von der Gathen V and Döbele H F 2003 Appl. Phys. Lett. 83 3272
[42] Moravej M, Yang X and Hicks R F 2006 J. Appl. Phys. 99 093305
[43] Lim J P and Uhm H S 2007 Phys. Plasmas 14 093504
[44] Kong D L, He F, Yang B Y, Duan Z C, Han R Y, Miao J S, Yan X and Ouyang J T 2021 J. Phys. D 54 405201
[45] Li X C, Jia P Y, Liu Z H, Li L C and Dong L F 2008 Acta Phys. Sin. 57 1001 (in Chinese)
[46] Yang L J, Song C H, Zhao N, Zhou S, Wu J C and Jia P Y 2021 Acta Phys. Sin. 70 155201 (in Chinese)
[47] Yuan Q H, Wang X M, Yin G Q, Li J and Dong C Z 2016 Contrib. Plasma Phys. 56 870
[48] Xiong Q, Nikiforov A Y, Lu X P and Leys C 2010 J. Phys. D 43 415201
[49] Zhu X M, Pu Y K, Balcon N and Boswell R 2009 J. Phys. D 42 142003
[50] Greb A, Niemi K, O'Connell D and Gans T 2014 Appl. Phys. Lett. 105 234105
[51] Wu J C, Wu K Y, Chen J Y, Song C H, Jia P Y and Li X C 2021 Plasma Sci. Technol. 23 085504
[52] Li X C, Yuan N, Jia P Y, Chang Y Y and Ji Y F 2011 Acta Phys. Sin. 60 125204 (in Chinese)
[53] Jiang W M, Tang J, Wang Y S, Zhao W and Duan Y X 2014 Sci. Rep. 4 6323
[54] Li X C, Chang Y Y, Liu R F, Zhao H H and Di C 2013 Acta Phys. Sin. 62 165205 (in Chinese)
[55] Starikovskiy A Y and Aleksandrov N L 2020 Plasma Sources Sci. Technol. 29 075004
[56] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
[57] Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y and Kang P C 2018 Acta Phys. Sin. 67 075201 (in Chinese)
[58] Jia P Y, Gao K, Zhou S, Chen J Y, Wu J C, Wu K Y and Li X C 2021 Plasma Sources Sci. Technol. 30 095021
[59] Zhang B Y, Wang Q, Zhang G X and Liao S S 2014 J. Appl. Phys. 115 043302
[60] Siefert N S, Sands B L and Ganguly B N 2006 Appl. Phys. Lett. 89 011502
[61] Han D M, Liu Y X, Gao F, Liu W Y, Xu J and Wang Y N 2018 Chin. Phys. B 27 065202
[62] Yuan X C, Li H W, Abbas M F, Li X R, Wang Z, Zhang G J and Sun A B 2020 J. Phys. D 53 425204
[63] Ponomarev A A and Aleksandrov N L 2015 Plasma Sources Sci. Technol. 24 035001
[1] Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
Rui Zhang(张锐), Jin-song Yu(於劲松), Jun Huang(黄骏), Guang-liang Chen(陈光良), Xin Liu(刘欣), Wei Chen(陈维), Xing-quan Wang(王兴权), Chao-rong Li(李超荣). Chin. Phys. B, 2018, 27(5): 055207.
[2] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen(陈兆权), Ben-Kuan Zhou(周本宽), Huang Zhang(张煌), Ling-Li Hong(洪伶俐), Chang-Lin Zou(邹长林), Ping Li(李平), Wei-Dong Zhao(赵卫东), Xiao-Dong Liu(刘晓东), Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
[3] Characteristics of helium DC plasma jets at atmospheric pressure with multiple cathodes
Cheng Wang(王城), Zelong Zhang(张泽龙), Haichao Cui(崔海超), Weiluo Xia(夏维珞), Weidong Xia(夏维东). Chin. Phys. B, 2017, 26(8): 085207.
[4] LIF diagnostics of hydroxyl radical in a methanol containing atmospheric-pressure plasma jet
Mu-Yang Qian(钱沐杨), San-Qiu Liu(刘三秋), Xue-Kai Pei(裴学凯), Xin-Pei Lu(卢新培), Jia-Liang Zhang(张家良), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(10): 105205.
[5] Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet
Mu-Yang Qian(钱沐杨), Cong-Ying Yang(杨从影), Zhen-dong Wang(王震东), Xiao-Chang Chen(陈小昌), San-Qiu Liu(刘三秋), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(1): 015202.
[6] Two-dimensional numerical study of an atmospheric pressurehelium plasma jet with dual-power electrode
Yan Wen (晏雯), Liu Fu-Cheng (刘福成), Sang Chao-Feng (桑超峰), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(6): 065203.
[7] Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons
Chen Zhao-Quan (陈兆权), Yin Zhi-Xiang (殷志祥), Xia Guang-Qing (夏广庆), Hong Ling-Li (洪伶俐), Hu Ye-Lin (胡业林), Liu Ming-Hai (刘明海), Hu Xi-Wei (胡希伟), A. A. Kudryavtsev. Chin. Phys. B, 2015, 24(2): 025203.
[8] Three different low-temperature plasma-based methods for hydrophilicity improvement of polyethylene films at atmospheric pressure
Chen Guang-Liang (陈光良), Zheng Xu (郑旭), Huang Jun (黄俊), Si Xiao-Lei (司晓蕾), Chen Zhi-Li (陈致力), Xue Fei (薛飞), Sylvain Massey. Chin. Phys. B, 2013, 22(11): 115206.
[9] Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏) . Chin. Phys. B, 2012, 21(4): 045202.
[10] Aspects of the upstream region in a plasma jet with dielectric barrier discharge configurations
Li Xue-Chen(李雪辰), Jia Peng-Ying(贾鹏英), Yuan-Ning(袁宁), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(4): 045204.
[11] Fabricating a reactive surface on the fibroin film by a room-temperature plasma jet array for biomolecule immobilization
Chen Guang-Liang (陈光良), Zheng Xu (郑旭), Lü Guo-Hua (吕国华), Zhang Zhao-Xia (张朝霞), Sylvain Massey, Wilson Smith, Michael Tatoulian, Yang Si-Ze (杨思泽). Chin. Phys. B, 2012, 21(10): 105201.
[12] The interaction of an atmospheric pressure plasma jet using argon or argon plus hydrogen peroxide vapour addition with bacillus subtilis
Deng San-Xi(邓三喜),Cheng Cheng(程诚), Ni Guo-Hua(倪国华), Meng Yue-Dong(孟月东), and Chen Hua(陈华). Chin. Phys. B, 2010, 19(10): 105203.
[13] Development of a new atmospheric pressure cold plasma jet generator and application in sterilization
Cheng Cheng (程诚), Liu Peng (刘鹏), Xu Lei (徐蕾), Zhang Li-Ye (张力叶), Zhan Ru-Juan (詹如娟), Zhang Wen-Rui (张文锐). Chin. Phys. B, 2006, 15(7): 1544-1548.
[14] OES study of the gas phase during diamond films deposition in high power DC arc plasma jet CVD system
Zhou Zu-Yuan (周祖源), Chen Guang-Chao (陈广超), Tang Wei-Zhong (唐伟忠), Lü Fan-Xiu (吕反修). Chin. Phys. B, 2006, 15(5): 980-984.
[15] Basic characteristics of an atmospheric pressure rf generated plasma jet
Wang Shou-Guo (王守国), Li Hai-Jiang (李海江), Ye Tian-Chun (叶甜春), Zhao Ling-Li (赵玲利). Chin. Phys. B, 2004, 13(2): 190-195.
No Suggested Reading articles found!