Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064305    DOI: 10.1088/1674-1056/ac5e98
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network

Hai-Yang Meng(孟海洋)1, Zi-Xiang Xu(徐自翔)1,2, Jing Yang(杨京)1,†, Bin Liang(梁彬)1,2, and Jian-Chun Cheng(程建春)1,2
1 Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Accurate and fast prediction of aerodynamic noise has always been a research hotspot in fluid mechanics and aeroacoustics. The conventional prediction methods based on numerical simulation often demand huge computational resources, which are difficult to balance between accuracy and efficiency. Here, we present a data-driven deep neural network (DNN) method to realize fast aerodynamic noise prediction while maintaining accuracy. The proposed deep learning method can predict the spatial distributions of aerodynamic noise information under different working conditions. Based on the large eddy simulation turbulence model and the Ffowcs Williams-Hawkings acoustic analogy theory, a dataset composed of 1216 samples is established. With reference to the deep learning method, a DNN framework is proposed to map the relationship between spatial coordinates, inlet velocity and overall sound pressure level. The root-mean-square-errors of prediction are below 0.82 dB in the test dataset, and the directivity of aerodynamic noise predicted by the DNN framework are basically consistent with the numerical simulation. This work paves a novel way for fast prediction of aerodynamic noise with high accuracy and has application potential in acoustic field prediction.
Keywords:  aerodynamic noise prediction      deep neural network      aeroacoustics  
Received:  14 January 2022      Revised:  02 March 2022      Accepted manuscript online:  17 March 2022
PACS:  43.28.+h (Aeroacoustics and atmospheric sound)  
  07.64.+z (Acoustic instruments and equipment)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grants Nos. 12174190, 11634006, 12074286, and 81127901), the Innovation Special Zone of the National Defense Science and Technology, High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Corresponding Authors:  Jing Yang     E-mail:  yangj@nju.edu.cn

Cite this article: 

Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春) Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network 2022 Chin. Phys. B 31 064305

[1] Astoul T, Wissocq G, Boussuge J F, Sengissen A and Sagaut P 2021 J. Comput. Phys. 447 110667
[2] Ritos K, Drikakis D, Kokkinakis I W and Spottswood S M 2020 Comput. Fluids 203 104520
[3] Gu X and Yao J 2021 J. Acoust. Soc. Am. 150 1912
[4] Wang Z H, Rienstra S W, Bi C X and Koren B 2020 J. Comput. Phys. 412 109442
[5] Feuchter C 2021 Comput. Fluids 224 104970
[6] Tam C K 2004 Int. J. Comput. Fluid Dyn. 18 547
[7] Kutz J N 2017 J. Fluid Mech. 814 1
[8] Ling J, Kurzawski A and Templeton J 2016 J. Fluid Mech. 807 155
[9] Wu J L, Xiao H and Paterson E 2018 Phys. Rev. Fluids 3 074602
[10] Sekar V, Jiang Q, Shu C and Khoo B C 2019 Phys. Fluids 31 057103
[11] Han R, Wang Y, Zhang Y and Chen G 2019 Phys. Fluids 31 127101
[12] Pandey S and Schumacher J 2020 Phys. Rev. Fluids 5 113506
[13] Park J and Choi H 2021 J. Fluid Mech. 914 16
[14] Rüttgers M, Lee S, Jeon S and You D 2019 Sci. Rep. 9 6057
[15] Pathak J, Hunt B, Girvan M, Lu Z and Ott E 2018 Phys. Rev. Lett. 120 024102
[16] Raissi M 2018 J. Mach. Learn. Res. 19 1
[17] Severson K A, Attia P M, Jin N, Perkins N, Jiang B, Yang Z, Chen M H, Aykol M, Herring P K, Fraggedakis D, Bazant M Z, Harris S J, Chueh W C and Braatz R D 2019 Nat. Energy 4 383
[18] Braatz R D 2019 Nat. Energy 4 383
[19] Ziletti A, Kumar D, Scheffler M and Ghiringhelli L M 2018 Nat. Commun. 9 2775
[20] Ye W, Chen C, Wang Z, Chu I H and Ong S P 2018 Nat. Commun. 9 3800
[21] Ye S, Li B, Li Q, Zhao H P and Feng X Q 2019 Appl. Phys. Lett. 115 161901
[22] Xu Z X, Gao H, Ding Y J, Yang J, Liang B and Cheng J C 2021 Phys. Rev. Appl. 16 044020
[23] Tao J and Sun G 2016 Chin. J. Aeronaut. 29 1213
[24] Sanaye S and Hassanzadeh A 2014 J. Renewable Sustainable Energy. 6 053105
[25] Li S and Lee S 2020 AIAA Aviation 2020 Forum, June 15-19, 2020, p. 2588
[26] Ffowcs Williams J E and Hawkings D L 1969 Proc. R. Soc. 264 321
[27] Lighthill M J 1952 Proc. R. Soc. 211 564
[28] Lighthill M J 1954 Proc. R. Soc. 222 1
[29] Blevins R D 1984 J. Sound Vib. 92 455
[30] Cox J S, Brentner K S and Rumsey C L 1998 Theor. Comput. Fluid Dyn. 12 233
[31] Revell J D, Prydz R A and Hays A P 1977 Lockheed Report 28074, Feburay, 1977, Final Report for NASA Contract NAS1-14403
[32] Li L, Liu P, Xing Y, Guo H and Tian Y 2016 Journal of Beijing University of Aeronautics and Astronsutics 42 977
[33] Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhutdinov R 2014 J. Mach. Learn. Res. 15 1929
[34] Nair V and Hinton G E 2010 Proceedings of the 27th International Conference on Machine Learning, June 21, 2010, Haifa, pp. 807-814
[35] Rumelhart D E, Hinton G E and Williams R J 1986 Nature 323 533
[36] Kingma D P and Ba J arXiv: 1412.6980
[1] Flow aeroacoustic damping using coupled mechanical–electrical impedance in lined pipeline
Chen Yong, Huang Yi-Yong, Chen Xiao-Qian, Bai Yu-Zhu, Tan Xiao-Dong. Chin. Phys. B, 2015, 24(5): 054302.
[1] ZHAO MING-XIN, WANG SHENG-LIE, SUN XIAN-PING, LI LI-YUN, ZENG XI-ZHI. MEASUREMENTS OF 129Xe NUCLEAR MAGNETIC RESONANCE IN GASEOUS, LIQUID AND SOLID XENON[J]. Chin. Phys. B, 1994, 3(7): 501 -505 .
[2] TAO BI-XIU, TAO BI-YOU. DYNAMICS OF PLANAR RELATIVISTIC DOMAIN WALLS[J]. Chin. Phys. B, 1997, 6(5): 356 -360 .
[3] Gao Hong, Liu Sheng-gang. DISPERSION RELATION OF A MAGNETIZED PLASMA-FILLED BACKWARD WAVE OSCILLATOR[J]. Chin. Phys. B, 2000, 9(4): 274 -278 .
[4] Wang Cheng-Zhi, Fang Mao-Fa. Quantum entanglement in a two-dimensional ion trap[J]. Chin. Phys. B, 2003, 12(3): 287 -293 .
[5] Cao Quan-Jun(曹全君), Zhang Yi-Men(张义门), Zhang Yu-Ming(张玉明), Lü Hong-Liana(吕红亮), Wang Yue-Hu(王悦湖), Chang Yuan-Cheng(常远程), and Tang Xiao-Yan(汤晓燕). A CAD oriented quasi-analytical large-signal drain current model for 4H-SiC MESFETs[J]. Chin. Phys., 2007, 16(4): 1097 -1100 .
[6] W. B. Cardoso, A. T. Avelar, B. Baseia, and N. G. de Almeida. Total teleportation of zero- and one-photon entangled states in running waves[J]. Chin. Phys. B, 2008, 17(1): 60 -63 .
[7] Luan Su-Zhen(栾苏珍) and Liu Hong-Xia(刘红侠). Quantum compact model for thin-body double-gate Schottky barrier MOSFETs[J]. Chin. Phys. B, 2008, 17(8): 3077 -3082 .
[8] Cao Wen-Hui(曹文会), Yu Hai-Feng(于海峰), Tian Ye (田野), Yu Hong-Wei(于洪伟),Ren Yu-Feng (任育峰), Chen Geng-Hua (陈赓华),andZhao Shi-Ping (赵士平) . Nb/Al-AlOx/Nb junctions with controllable critical current density for qubit application[J]. Chin. Phys. B, 2009, 18(11): 5044 -5046 .
[9] Jin Zhang-Ying(金张英), Shen Bai-Fei(沈百飞),Zhang Xiao-Mei(张晓梅), Wang Feng-Chao(王凤超), and Ji Liang-Liang(吉亮亮) . Energetic-ion generation by the combination of laser pressure and Coulomb explosion[J]. Chin. Phys. B, 2009, 18(12): 5395 .
[10] Wang Fa-Qiang(王发强), Zhang Zhi-Ming(张智明), and Liang Rui-Sheng(梁瑞生). Decoherence of two-qubit system in a non-Markovian squeezed reservoir[J]. Chin. Phys. B, 2009, 18(2): 597 -603 .