Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080307    DOI: 10.1088/1674-1056/ac5d2f
GENERAL Prev   Next  

Direct measurement of two-qubit phononic entangled states via optomechanical interactions

A-Peng Liu(刘阿鹏)1,†, Liu-Yong Cheng(程留永)2, Qi Guo(郭奇)3, Shi-Lei Su(苏石磊)4, Hong-Fu Wang(王洪福)5, and Shou Zhang(张寿)5,‡
1 Shanxi Institute of Technology, Yangquan 045000, China;
2 School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030032, China;
3 College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China;
4 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China;
5 Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  We propose schemes of direct concurrence measurement for two-qubit phononic states from quantized mechanical vibration. By combining the Mach-Zehnder interferometer with the optomechanical cross-Kerr nonlinear effect, direct concurrence measurement schemes for two-qubit phononic entangled states are achieved with the help of photon detection with respect to the output of the interferometer. For different types of entangled states, diversified quantum devices and operations are designed accordingly. The final analysis shows reasonable performance under the current parameter conditions. Our schemes may be useful for potential phonon-based quantum computation and information in the future.
Keywords:  entanglement measurement      phononic qubit      optomechanical system  
Received:  05 October 2021      Revised:  17 February 2022      Accepted manuscript online:  14 March 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61801280, 11604190, 11747096, 11804308, and 61465013), the Science and Technologial Innovation Programs of Higher Education Institutions in Shanxi Province, China (Grant Nos. 2019L0988 and 2019L0043), the Fund for Shanxi "1331 Project" Key Subjects Construction (Grant No. 2019XF-04), and the Applied Fundamental Research Project of Yangquan (Grant No. 2019G24).
Corresponding Authors:  A-Peng Liu, Shou Zhang     E-mail:;

Cite this article: 

A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿) Direct measurement of two-qubit phononic entangled states via optomechanical interactions 2022 Chin. Phys. B 31 080307

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Su S L, Guo F Q, Tian L, Zhu X Y, Yan L L, Liang E J and Feng M 2020 Phys. Rev. A 101 012347
[4] Su S L, Shen H Z, Liang E J and Zhang S 2018 Phys. Rev. A 98 032306
[5] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[6] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337
[7] White A G, James D F V, Eberhard P H and Kwiat P G 1999 Phys. Rev. Lett. 83 3103
[8] Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
[9] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[10] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[11] Werner R F 1988 Phys. Rev. A 40 4277
[12] Wei T C, Altepeter J B, Branning D, Goldbart P M, James D F V, Jeffrey E, Kwiat P G, Mukhopadhyay S and Peters N A 2005 Phys. Rev. A 71 032329
[13] Collins D and Gisin N 2004 J. Phys. A 37 1775
[14] Bell J S 1964 Physics 1 195
[15] Peres A 1996 Phys. Rev. Lett. 77 1413
[16] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[17] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
[18] James D F V, Kwiat P G, Munro W J and White A G 2005 Phys. Rev. A 64 052312
[19] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[20] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[21] Wootters W K 2001 Quantum Inf. Comput. 1 27
[22] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[23] Zhang L H, Yang Q, Yang M, Song W and Cao Z L 2013 Phys. Rev. A 88 062342
[24] Zhang L H, Yang M and Cao Z L 2014 Eur. Phys. J. D 68 109
[25] Romero G, López C E, Lastra F, Solano E and Retamal J C 2007 Phys. Rev. A 75 032303
[26] Zeng T, Chu W J, Yang Q, Yang M, Song W and Cao Z L 2017 Quantum Inf. Process. 16 262
[27] Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022
[28] Zhou L and Sheng Y B 2015 Entropy 17 4293
[29] Lee S M, Ji S W, Lee H W and Zubairy M S 2008 Phys. Rev. A 77 040301(R)
[30] Zhou L and Sheng Y B 2014 Phys. Rev. A 90 024301
[31] Cheng L Y, Guo Q, Wang H F and Zhang S 2019 Quantum Inf. Process. 18 214
[32] Cheng L Y, Zheng L N, Wang H F and Zhang S 2019 Int. J. Theore. Phys. 58 2994
[33] Cheng L Y, Yang G H, Guo Q, Wang H F and Zhang S 2016 Sci. Rep. 6 19482
[34] Yang R C, Lin X, Huang Z P and Li H C 2009 Commun. Theor. Phys. 51 252
[35] Sheng Y B, Guo R, Pan J, Zhou L and Wang X F 2015 Quantum Inf. Process. 14 963
[36] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[37] Ludwig M, Safavi-Naeini A H, Painter O and Marquardt F 2012 Phys. Rev. Lett. 109 063601
[38] Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P and Rabl P 2012 Phys. Rev. Lett. 109 013603
[39] Tian L 2012 Phys. Rev. Lett. 108 153604
[40] Han X, Wang D Y, Bai C H, Cui W X, Zhang S and Wang H F 2019 Phys. Rev. A 100 033812
[41] Bai C H, Wang D Y, Wang H F, Zhu A D and Zhang S 2017 Sci. Rep. 7 2545
[42] Wang D Y, Bai C H, Liu S, Zhang S and Wang H F 2019 J. Phys. B 52 045502
[43] Vitali D, Gigan S, Ferreira A, Bohm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[44] Paternostro M, Vitali D, Gigan S, Kim M S, Brukner C, Eisert J and Aspelmeyer M 2007 Phys. Rev. Lett. 99 250401
[45] Liao J Q and Nori F 2013 Phys. Rev. A 88 023853
[46] Xie H, Liao C G, Shang X, Ye M Y and Lin X M 2017 Phys. Rev. A 96 013861
[47] Zhang H, Song X K, Ai Q, Wang H, Yang G J and Deng F G 2019 Opt. Express 27 7384
[48] Zhang W Z, Cheng J and Zhou L 2015 J. Phys. B 48 015502
[49] Zhang K, Bariani F, Dong Y, Zhang W and Meystre P 2015 Phys. Rev. Lett. 114 113601
[50] Schuetz M J A, Kessler E M, Giedke G, Vandersypen L M K, Lukin M D and Cirac J I 2015 Phys. Rev. X 5 031031
[51] Flayac H and Savona V 2014 Phys. Rev. Lett. 113 143603
[52] Zhang W J, Zhang Y, Guo Q, Liu A P, Li G and Zhang T 2021 Phys. Rev. A 104 053506
[53] Chen S S, Zhang H, Ai Q and Yang G J 2019 Phys. Rev. A 100 052306
[54] Yu P L, Cicak K, Kampel N S, Tsaturyan Y, Purdy T P, Simmonds R W and Regal C A 2014 Appl. Phys. Lett. 104 023510
[55] Tsaturyan Y, Barg A, Polzik E S and Schliesser A 2017 Nat. Nanotechnol. 12 776
[56] Patel R N, Wang Z, Jiang W, Sarabalis C J, Hill J T and Safavi-Naeini A H 2018 Phys. Rev. Lett. 121 040501
[57] Chen T Y, Zhang W Z, Fang R Z, Hang C Z and Zhou L 2017 Opt. Express 25 10779
[58] Yin T S, Lü X Y, Wan L L, Bin S W and Wu Y 2018 Opt. Lett. 43 2050
[59] Liao J Q, Huang J F, Tian L, Kuang L M and Sun C P 2020 Phys. Rev. A 101 063802
[60] Tian L, Allman M S and Simmonds R W 2008 New J. Phys. 10 115001
[61] O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M and Cleland A N 2010 Nature 464 697
[62] Okamoto H, Gourgout A, Chang C Y, Onomitsu K, Mahboob I, Chang E Y and Yamaguchi H 2013 Nat. Phys. 9 480
[63] Ockeloen-Korppi C F, Damskägg E, Pirkkalainen J M, Asjad M, Clerk A A, Massel F, Woolley M J and Sillanpää M A 2018 Nature 556 478
[64] Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S and Gröblacher S 2018 Nature 556 473
[65] Pepper B, Ghobadi R, Jeffrey E, Simon C and Bouwmeester D 2012 Phys. Rev. Lett. 109 023601
[66] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A and Rempe G 2007 Nat. Phys. 3 253
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[4] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[5] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[6] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[7] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[8] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[9] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[10] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[11] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[12] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[13] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[14] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
[15] Controllable optical bistability in a three-mode optomechanical system with a membrane resonator
Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬). Chin. Phys. B, 2018, 27(7): 074214.
No Suggested Reading articles found!