Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 086107    DOI: 10.1088/1674-1056/ac5a40
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of a new BP2 two-dimensional material

Zhizheng Gu(顾志政)1,†, Shuang Yu(于爽)1,†, Zhirong Xu(徐知荣)1,†, Qi Wang(王琪)1,†, Tianxiang Duan(段天祥)1,†, Xinxin Wang(王鑫鑫)1, Shijie Liu(刘世杰)1,2,‡, Hui Wang(王辉)1,§, and Hui Du(杜慧)1,¶
1 Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  Two-dimensional materials have a wide range of applications in many aspects due to their unique properties. Here we carry out a detailed structural search and design of the BP2 using the first principles method, and find a new PMM2 sheet. The analysis of the phonon dispersive curves shows that the 2D PMM2 is dynamic stable. The study of molecular dynamics shows that the 2D PMM2 can be stable under high temperature, even at 600 K. Most importantly, when a suitable strain is applied, the structure can exhibit other electronic properties such as direct band gap semiconductor. In addition, the small strain can tune the band gap value of the PMM2 structure to around 1.4 eV, which is very close to the ideal band gap of solar materials. Therefore, the 2D PMM2 may have potential applications in the field of photovoltaic materials.
Keywords:  two-dimensional material      density functional theory      direct band gap      strain  
Received:  15 January 2022      Revised:  27 February 2022      Accepted manuscript online:  03 March 2022
PACS:  61.82.Fk (Semiconductors)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004102 and 11847094), the China Postdoctoral Science Foundation (Grant No. 2020M670836), the Open Project of State Key Laboratory of Superhard Materials in Jilin University (Grant No. 201703), and Student Research Training Program of Henan University of Science and Technology (Grant No. WLSRTP202118).
Corresponding Authors:  Shijie Liu, Hui Wang, Hui Du     E-mail:  liusj0228@163.com;wanghui08@haust.edu.cn;duhui0207@163.com

Cite this article: 

Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧) First-principles study of a new BP2 two-dimensional material 2022 Chin. Phys. B 31 086107

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Mattheiss L F 1973 Phys. Rev. B 8 3719
[3] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
[4] Osada M and Sasaki T 2012 Adv. Mater. 24 210
[5] Ayari A, Cobas E, Ogundadegbe O and Fuhrer M S 2007 J. Appl. Phys. 101 014507
[6] Dean C R, Young A F, Meric I, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotech. 5 722
[7] PacileD, Meyer J C, GiritC O and ZettlA 2008 Appl. Phys. Lett. 92 133107
[8] Guo S, Zhang Y, Ge Y, Zhang S, Zeng H and Zhang H 2019 Adv. Mater. 31 1902352
[9] Liu S, Du H, Li G, Li L, Shi X and Liu B 2018 Phys. Chem. Chem. Phys. 20 20615
[10] Feng X, Zhu J, Wu W and Yang S 2021 Chin. Phys. B 30 107304
[11] Zhuang A, Li J, Wang Y, Wen X, Lin Y, Xiang B, Wang X and Zeng J 2014 Angew. Chem. Int. Ed. 53 6425
[12] Du H, Liu S, Li G, Li L, Liu X and Liu B 2019 Chin. Phys. B 1 016105
[13] Liu S and Du H 2021 Chin. Phys. B 30 076104
[14] Lin X, Lu J, Shao Y, Zhang Y, Wu X, Pan J, Gao L, Zhu S, Qian K, Zhang Y, Bao D, Li L, Wang Y, Liu Z, Sun J, Lei T, Liu C, Wang J, Ibrahim K, Leonard D N, Zhou W, Guo H, Wang Y, Du S, Pantelides S T and Gao H 2017 Nat. Mater. 16 717
[15] Du H, Li G, Chen J, Lv Z, Chen Y and Liu S 2020 Phys. Chem. Chem. Phys. 22 20107
[16] Yu Y, Yang F, Lu X, Yan Y, Cho Y, Ma L, Niu X, Kim S, Son Y-W, Feng D, Li S, Cheong SW, Chen X and Zhang Y 2015 Nat. Nanotech. 10 270
[17] Li T 2021 Chin. Phys. B 30 100508
[18] Xia F, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[19] Siahrostami S, Tsai C, Karamad M, Koitz R, García-Melchor M, Bajdich M, Vojvodic A, Abild-Pedersen F, Norskov J and Studt F 2016 Catal. Lett. 146 1917
[20] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[21] Kumashiro Y 1990 J. Mater. Res. 5 2933
[22] Gui R, Xue Z, Zhou X, Gu C, Ren X, Cheng H, Ma D, Qin J, Liang Y, Yan X, Zhang J, Zhang X, Yu X, Wang L, Zhao Y and Wang S 2020 Phys. Rev. B 101 035302
[23] Setten M J V, Rignanese G M, Hautier G, Varley J B, Miglio A and Ha V A 2017 Chem. Mater. 29 2568
[24] Zheng Q, Li S, Li C, Lv Y, Liu X, Huang P Y, Broido D A, Lv B and Cahill D G 2018 Adv. Funct. Mater. 28 1805116
[25] Shi L, Li P, Zhou W, Wang T, Chang K, Zhang H, Kako T, Liu G and Ye J 2016 Nano Energy 28 158
[26] Wang S and Wu X 2015 Chin. J. Chem. Phys. 28 588
[27] Liu S, Liu B, Shi X, Lv J, Niu S, Yao M, Li Q, Liu R, Cui T, Liu B 2017 Sci. Rep. 7 2404
[28] Wang H, Li X, Sun J, Liu Z and Yang J 2017 2D Mater. 4 045020
[29] Li G, Abbott J, Brasfield J, Liu P, Dale A, Duscher G, Rack P and Charles S 2015 Appl. Surf. Sci. 327 7
[30] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
[31] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[32] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[33] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[36] Ding Y and Wang Y 2013 J. Phys. Chem. C 117 18266
[37] Li T 2012 Phys. Rev. B 85 235407
[38] Mortazavi B and Cuniberti G 2014 Nanotechnology 25 215704
[39] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[40] Ni Z, Yu T, Lu Y, Wang Y, Feng Y and Shen Z 2008 ACS Nano 2 2301
[41] Pereira V M, Castro N A H and Peres N M R 2009 Phys. Rev. B 80 045401
[42] Wang Y, Xiao C, Chen M, Hua C, Zou J, Wu C, Jiang J, Yang S, Lu Y and Ji W 2018 Materials Horizons 5 521
[43] Resta R 1994 Rev. Mod. Phys. 66 899
[44] King-Smith R and Vanderbilt D 1993 Phys. Rev. B 47 1651
[1] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[2] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[3] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[4] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[5] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[6] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[7] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[8] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
No Suggested Reading articles found!