Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077304    DOI: 10.1088/1674-1056/ac560d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons

Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路)
School of Physics and Electrical Information, Shangqiu Normal University, Henan 476000, China
Abstract  Exploring the half-metallic nanostructures with large band gap and high carrier mobility is a crucial solution for developing high-performance spintronic devices. The electric and magnetic properties of monolayer zigzag black-phosphorene nanoribbons (ZBPNRs) with various widths are analyzed by means of the first-principles calculations. Our results show that the magnetic ground state is dependent on the width of the nanoribbons. The ground state of narrow nanoribbons smaller than 8ZBPNRs prefers ferromagnetic order in the same edge but antiferromagnetic order between two opposite edges. In addition, we also calculate the electronic band dispersion, density of states and charge density difference of 8ZBPNRs under the action of out-of-plane electric field. More interesting, the addition of out-of-plane field can modulate antiferromagnetic semiconductor to the half metal by splitting the antiferromagnetic degeneracy. Our results propose a new approach to realize half-metal in phosphorene, which overcomes the drawbacks of graphene/silicene with negligible band gap as well as the transitional metal sulfide (TMS) with low carrier mobility.
Keywords:  half-metal      antiferromagnetic      two-dimensional materials      spin polarization  
Received:  19 January 2022      Revised:  10 February 2022      Accepted manuscript online:  17 February 2022
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  75.75.Lf (Electronic structure of magnetic nanoparticles)  
  82.45.Mp (Thin layers, films, monolayers, membranes)  
  31.15.A- (Ab initio calculations)  
Fund: This work is supported by Key Scientific Research Projects of Colleges and Universities in Henan Province, China (Grant No. 21A140022).
Corresponding Authors:  Xiao-Fang Ouyang     E-mail:  oyxf328@126.com

Cite this article: 

Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路) Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons 2022 Chin. Phys. B 31 077304

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J A, Molnar S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Awschalom D D and Flatte M E 2007 Nat. Phys. 3 153
[4] Li X X and Yang J L 2016 Natl. Sci. Rev. 3 365
[5] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[7] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett 100 016602
[8] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[9] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[10] Sahin H, Tongay S, Horzum S, Fan W, Zhou J, Li J, Wu J and Peeters F M 2013 Phys. Rev. B 87 165409
[11] Guan Z, Ni S and Hu S 2018 J. Phys. Chem. C 122 6209
[12] Liu H L, Yang T, Chen J H, Chen H W, Guo H, Saito R, Li M Y and Li L J 2020 Sci. Rep. 10 15282
[13] Surucu O, Isik M, Gasanly N M, Terlemezoglu M and Parlak M 2020 Mater. Lett. 275 128080
[14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[15] Li L, Kim J, Jin C, Ye G J, Qiu D Y, Jornada F H D, Shi Z, Chen L, Zhang Z and Yang F 2017 Nat. Nanotechnol. 12 21
[16] Xu R, Yang J, Zhu Y, Yan H, Pei J J, Myint Y W, Zhang S and Lu Y R 2016 Nanoscale 8 129
[17] Liu H, Neal A T, Zhu Z, Xu X, Tomanek D and Ye P D 2014 ACS Nano 8 4033
[18] Qiao J, Kong X, Hu Z, Yang F and Ji W 2014 Nat. Commun. 5 4475
[19] Yoon S, Kim T, Seo S Y, Shin S H, Song S B, Kim B J, Watanabe K, Taniguchi T, Lee G H, Jo M H, Qiu D Y and Kim J 2021 Phys. Rev. B 103 L041407
[20] Dutreix C, Stepanov E A and Katsnelson M I 2016 Phys. Rev. B 93 241404
[21] Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X D and Xia F N 2015 Nat. Nanotechnol. 10 517
[22] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[23] Castellanos-Gomez A 2015 J. Phys. Chem. Lett. 6 4280
[24] Kou L, Chen C and Smith S C 2015 J. Phys. Chem. Lett. 6 2794
[25] Kumari P, Majumder S, Rani S, Nair A K, Kumari K, Venkata Kamalakarb M and Ray S J 2020 Phys. Chem. Chem. Phys. 22 5893
[26] Luo Y, Ren C, Wang S, Li S, Zhang P, Yu J, Sun M, Sun Z and Tang W 2018 Nanoscale Res. Lett. 13 282
[27] Feng J, Li G, Meng X, Jian X, Dai Z, Zhao Y and Zhou Z 2019 Frontiers of Physics 14 43604
[28] Seixas L, Carvalho A and Castro Neto A H 2015 Phys. Rev. B 91 155138
[29] Wang Z, Wu Q and Shen L 2017 arXiv:1701 01105
[30] Wang G, Pandey R and Karna S P 2015 Appl. Phys. Lett. 106 173104
[31] Khan I and Hong J 2015 New J. Phys. 17 023056
[32] Yang G, Xu S, Zhang W, Ma T and Wu C 2016 Phys. Rev. B 94 075106
[33] Du Y, Liu H, Xu B, Sheng L, Yin J, Duan C and Wan X 2015 Sci. Rep. 5 8921
[34] Zhu Z, Li C, Yu W, Chang D, Sun Q and Jia Y 2014 Appl. Phys. Lett. 105 113105
[35] Liu Q, Zhang X, Abdalla L B, Fazzio A and Zunger A 2015 Nano Lett. 15 1222
[36] Ghosh B, Singh B, Prasad R and Agarwal A 2016 Phys. Rev. B 94 205426
[37] Ren Y, Cheng F, Zhang Z H and Zhou G 2018 Sci. Rep. 8 2932
[38] Kresse G and Fürthmuller J 1996 Phys. Rev. B 54 11169
[39] Kresse G and Fürthmuller J 1996 Comput. Mater. Sci. 6 15
[40] Blöchl P E 1994 Phys. Rev. B 50 17953
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Wu Q, Shen L, Yang M, Cai Y, Huang Z and Feng Y P 2015 Phys. Rev. B 92 035436
[43] Lee H, Son Y. W, Park N, Han S and Yu J 2005 Phys. Rev. B 72 174431
[44] Pisani L, Chan J A, Montanari B and Harrison N M 2007 Phys. Rev. B 75 064418
[1] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[2] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[3] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[4] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[5] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[6] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[7] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[8] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[9] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[10] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[11] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[12] Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(4): 047105.
[13] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[14] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[15] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
No Suggested Reading articles found!