Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048503    DOI: 10.1088/1674-1056/ac4cc4
RAPID COMMUNICATION Prev   Next  

The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy

Shuyao Chen(陈姝瑶)1, Yunfei Xie(谢云飞)1, Yucong Yang(杨玉聪)1, Dong Gao(高栋)1, Donghua Liu(刘冬华)2,†, Lin Qin(秦林)3, Wei Yan(严巍)1, Bi Tan(谭碧)1, Qiuli Chen(陈秋丽)1, Tao Gong(龚涛)1, En Li(李恩)1,3, Lei Bi(毕磊)1, Tao Liu(刘涛)1,‡, and Longjiang Deng(邓龙江)1
1 National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China;
3 School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  Yttrium iron garnet (YIG) films possessing both perpendicular magnetic anisotropy (PMA) and low damping would serve as ideal candidates for high-speed energy-efficient spintronic and magnonic devices. However, it is still challenging to achieve PMA in YIG films thicker than 20 nm, which is a major bottleneck for their development. In this work, we demonstrate that this problem can be solved by using substrates with moderate lattice mismatch with YIG so as to suppress the excessive strain-induced stress release as increasing the YIG thickness. After carefully optimizing the growth and annealing conditions, we have achieved out-of-plane spontaneous magnetization in YIG films grown on sGGG substrates, even when they are as thick as 50 nm. Furthermore, ferromagnetic resonance and spin pumping induced inverse spin Hall effect measurements further verify the good spin transparency at the surface of our YIG films.
Keywords:  spintronics      perpendicular magnetic anisotropy      magnetic thin film      deposition by sputtering  
Received:  16 December 2021      Revised:  17 January 2022      Accepted manuscript online:  19 January 2022
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.30.Gw (Magnetic anisotropy)  
  85.70.Kh (Magnetic thin film devices: magnetic heads (magnetoresistive, inductive, etc.); domain-motion devices, etc.)  
  81.15.Cd (Deposition by sputtering)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 52072060 and 52021001), the National Key R&D Program of China (Grant No. 2021YFB2801600), and the China Postdoctoral Science Foundation (Grant No. 2021M700679).
Corresponding Authors:  Donghua Liu, Tao Liu     E-mail:  dhliu@uestc.edu.cn;liu.tao@uestc.edu.cn

Cite this article: 

Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江) The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy 2022 Chin. Phys. B 31 048503

[1] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[2] Karayev S, Murray P D, Khadka D, Thapaliya T R, Liu K and Huang S X 2019 Phys. Rev. Mater. 3 041401
[3] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[4] Li P, Liu T, Chang H, Kalitsov A, Zhang W, Csaba G, Li W, Richardson D, DeMann A, Rimal G, Dey H, Jiang J S, Porod W, Field S B, Tang J, Marconi M C, Hoffffmann A, Mryasov O and Wu M 2016 Nat. Commun. 7 12688
[5] Vogt K, Schultheiss H, Jain S, Pearson J E, Hoffmann A, Bader S D and Hillebrands B 2012 Appl. Phys. Lett. 101 042410
[6] Liu H, Chen J, Liu T, Heimbach F, Yu H, Xiao Y, Hu J, Liu M, Chang H, Stueckler T, Tu S, Zhang Y, Gao P, Liao Z, Yu D, Xia K, Lei N, Zhao W and Wu M 2018 Nat. Commun. 9 738
[7] Yang Y, Liu T, Bi L and Deng L 2020 J. Alloys Compd. 860 158235
[8] Tang C, Sellappan P, Liu Y, Xu Y, Garay J E and Shi J 2016 Phys. Rev. B 94 140403
[9] Ortiz V H, Aldosary M, Li J, Xu Y, Lohmann M I, Sellappan P, Kodera Y, Garay J E and Shi J 2018 APL Mater. 6 121113
[10] Ciubotariu O, Semisalova A, Lenz K and Albrecht M 2019 Sci. Rep. 9 17474
[11] Quindeau A, Avci C O, Liu W, Sun C, Mann M, Tang A S, Onbasli M C, Bono D, Voyles P M, Xu Y, Robinson J, Beach G S D and Ross C A 2017 Adv. Electron. Mater. 3 1600376
[12] Zanjani S M and OnbaslıM C 2020 J. Magn. Magn. Mater. 499 166108
[13] Crossley S, Quindeau A, Swartz A G, Rosenberg E R, Beran L, Avci C O, Hikita Y, Ross C A and Hwang H Y 2019 Appl. Phys. Lett. 115 172402
[14] Wu C N, Tseng C C, Fanchiang Y T, Cheng C K, Lin K Y, Yeh S L, Yang S R, Wu C T, Liu T, Wu M, Hong M and Kwo J 2018 Sci. Rep. 8 11087
[15] Rosenberg E R, Beran L, Avci C O, Zeledon C, Song B, Gonzalez-Fuentes C, Mendil J, Gambardella P, Veis M, Garcia C, Beach G S D and Ross C A 2018 Phys. Rev. Mater. 2 094405
[16] Chen H, Cheng D, Yang H, Wang D, Zhou S, Shi Z and Qiu X 2020 Appl. Phys. Lett. 116 112401
[17] Lin Y, Jin L, Zhang H, Zhong Z, Yang Q, Rao Y and Li M 2020 J. Magn. Magn. Mater. 496 165886
[18] Zhou H A, Cai L, Xu T, Zhao Y and Jian W 2021 Chin. Phys. B 30 097503
[19] Ding J, Liu T, Chang H and Wu M 2020 IEEE Magn. Lett. 11 5502305
[20] Li G, Bai H, Su J, Zhu Z Z, Zhang Y and Cai J W 2019 APL Mater. 7 041104
[21] Guo C Y, Wan C H, Zhao M K, Wu H, Fang C, Yan Z R, Feng J F, Liu H F and Han X F 2019 Appl. Phys. Lett. 114 192409
[22] Fu J, Hua M, Wen X, Xue M, Ding S, Wang M, Yu P, Liu S, Han J, Wang C, Du H, Yang Y and Yang J 2017 Appl. Phys. Lett. 110 202403
[23] Ding J, Liu C, Zhang Y, Erugu U, Quan Z, Yu R, McCollum E, Mo S, Yang S, Ding H, Xu X, Tang J, Yang X and Wu M 2020 Phys. Rev. Appl. 14 014017
[24] Wang H, Du C, Hammel P C and Yang F 2013 Phys. Rev. B 89 1
[25] Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K and Wang K L 2017 Nano Lett. 17 261
[26] Wei W S, He Z D, Qu Z and Du H F 2021 Rare Met. 40 3076
[27] Qin P X, Yan H, Wang X N, Feng Z X, Guo H X, Zhou X R, Wu H J, Zhang X, Leng Z G G, Chen H Y and Liu Z Q 2020 Rare Met. 39 95
[28] Richardson D, Katz S, Wang J, Takahashi Y K, Srinivasan K, Kalitsov A, Hono K, Ajan A and Wu M 2018 Phys. Rev. Appl. 10 054046
[29] Liu T, Kally J, Pillsbury T, Liu C, Chang H, Ding J, Cheng Y, Hilse M, Engel-Herbert R, Richardella A, Samarth N and Wu M 2020 Phys. Rev. Lett. 125 017204
[30] Heinz D M, Besser P J, Owens J M, Mee J E and Pulliam G R 1971 J. Appl. Phys. 42 1243
[31] Hansen P 1974 J. Appl. Phys. 45 3638
[32] Aulock and Von Aulock W H 1965 Handbook of microwave of ferrite materials (New York:Academic Press)
[33] Anastassakis E 1990 J. Appl. Phys. 68 4561
[34] Clark A E and Strakna R E 1961 J. Appl. Phys. 32 1172
[35] Ding Y, Klemmer T J and Crawford T M 2004 J. Appl. Phys. 96 2969
[36] Soumah L, Beaulieu N, Qassym L, Carrétéro C, Jacquet E, Lebourgeois R, Youssef J B, Bortolotti1 P, Cros1 V and Anane A 2018 Nat. Commun. 9 3355
[37] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 117601
[38] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. B 66 224403
[39] Du C, Wang H, Hammel P C and Yang F 2015 J. Appl. Phys. 117 172603
[40] Haertinger M, Back C H, Lotze J, Weiler M, Geprags S, Huebl H, Goennenwein S T B and Woltersdorf G 2015 Phys. Rev. B 92 054437
[41] Hamadeh A, d'Allivy Kelly O, Hahn C, Meley H, Bernard R, Molpeceres A H, Naletov V V, Viret M, Anane A, Cros V, Demokritov S O, Prieto J L, Muñoz M, de Loubens G and Klein O 2014 Phys. Rev. Lett. 113 197203
[42] DC M, Liu T, Chen J Y, Peterson T, Sahu P, Li H, Zhao Z, Wu M and Wang J P 2019 Appl. Phys. Lett. 114 102401
[1] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[2] Thickness-dependent magnetic properties in Pt/[Co/Ni]n} multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军), Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[3] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[4] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[5] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[6] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[7] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[8] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[9] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[10] Effect of hydrogen plasma implantation on the micro-structure and magnetic properties of hcp-Co8057Fe4Ir16 thin films
Hui Wang(王辉), Meng Wu(吴猛), Haiping Zhou(周海平), Bo Zhang(张博), Shixin Hu(胡世欣), Tianyong Ma(马天勇), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2021, 30(5): 057505.
[11] Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(4): 047105.
[12] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[13] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
[14] Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory
Malak Azmat Ali, G Murtaza, A Laref. Chin. Phys. B, 2020, 29(6): 066102.
[15] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
No Suggested Reading articles found!