Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 060308    DOI: 10.1088/1674-1056/ac48f8
GENERAL Prev   Next  

Coherence migration in high-dimensional bipartite systems

Zhi-Yong Ding(丁智勇)1,2, Pan-Feng Zhou(周攀峰)1, Xiao-Gang Fan(范小刚)3, Cheng-Cheng Liu(刘程程)1,2, Juan He(何娟)1,2,†, and Liu Ye(叶柳)3,‡
1 School of Physics and Electronic Engineering, Fuyang Normal University, Fuyang 236037, China;
2 Key Laboratory of Functional Materials and Devices for Informatics of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China;
3 School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230039, China
Abstract  The conservation law for first-order coherence and mutual correlation of a bipartite qubit state was firstly proposed by Svozilík et al., and their theories laid the foundation for the study of coherence migration under unitary transformations. In this paper, we generalize the framework of first-order coherence and mutual correlation to an arbitrary (m $\otimes$ n)-dimensional bipartite composite state by introducing an extended Bloch decomposition form of the state. We also generalize two kinds of unitary operators in high-dimensional systems, which can bring about coherence migration and help to obtain the maximum or minimum first-order coherence. Meanwhile, the coherence migration in open quantum systems is investigated. We take depolarizing channels as examples and establish that the reduced first-order coherence of the principal system over time is completely transformed into mutual correlation of the (2 $\otimes$ 4)-dimensional system-environment bipartite composite state. It is expected that our results may provide a valuable idea or method for controlling the quantum resource such as coherence and quantum correlations.
Keywords:  first-order coherence      mutual correlation      coherence migration      high-dimensional  
Received:  15 September 2021      Revised:  28 December 2021      Accepted manuscript online:  07 January 2022
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.-a (Quantum information)  
  34.80.Pa (Coherence and correlation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11605028), Anhui Provincial Natural Science Foundation, China (Grant Nos. 2108085MA18 and 2008085QA47), the Natural Science Research Project of Education Department of Anhui Province of China (Grant Nos. KJ2020A0527, KJ2021ZD0071 and KJ2021A0678), the Key Program of Excellent Youth Talent Project of the Education Department of Anhui Province of China (Grant No. gxyqZD2019042), and the Research Center for Quantum Information Technology of Fuyang Normal University (Grant No. kytd201706).
Corresponding Authors:  Juan He, Liu Ye     E-mail:  juanhe78@163.com;yeliu@ahu.edu.cn

Cite this article: 

Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳) Coherence migration in high-dimensional bipartite systems 2022 Chin. Phys. B 31 060308

[1] Glauber R J 1963 Phys. Rev. 130 2529
[2] Glauber R J 1963 Phys. Rev. 131 2766
[3] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[4] Chin A W, Prior J, Rosenbach R, Caycedo-Soler F, Huelga S F and Plenio M B 2013 Nat. Phys. 9 113
[5] Ficek Z and Swain S 2005 Quantum Interference and Coherence: Theory and Experiments (New York: Springer)
[6] Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
[7] Narasimhachar V and Gour G 2015 Nat. Commun. 6 7689
[8] Lostaglio M, Korzekwa K, Jennings D and Rudolph T 2015 Phys. Rev. X 5 021001
[9] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[10] Demkowicz-Dobrzański R and Maccone L 2014 Phys. Rev. Lett. 113 250801
[11] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222
[12] Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y and Nori F 2013 Nat. Phys. 9 10
[13] Lloyd S 2011 J. Phys. Conf. Ser. 302 012037
[14] Huelga S F and Plenio M B 2013 Contemp. Phys. 54 181
[15] Svozilík J, Vallés A, Peřina J and Torres J P 2015 Phys. Rev. Lett. 115 220501
[16] Kagalwala K H, Giuseppe G D, Abouraddy A F and Saleh B E 2013 Nat. Photonics 7 72
[17] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[18] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[19] Hu M L, Hu X, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762 1
[20] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[21] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[22] Miranowicz A, Bartkiewicz K, Lambert N, Chen Y N and Nori F 2015 Phys. Rev. A 92 062314
[23] Ge W, Tasgin M E and Zubairy M S 2015 Phys. Rev. A 92 052328
[24] Cernoch A, Bartkiewicz K, Lemr K and Soubusta J 2018 Phys. Rev. A 97 042305
[25] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[26] Breuer H and Petruccione F 2002 The Theory of Open Quantum Systems (New York: Oxford University Press)
[27] Zurek W H 2003 Rev. Mod. Phys. 75 715
[28] Schlosshauer M 2005 Rev. Mod. Phys. 76 1267
[29] Harouni M B 2021 Chin. Phys. B 30 090301
[30] Luo Y and Li Y 2019 Chin. Phys. B 28 040301
[31] Wu T and Song X K 2014 Chin. Phys. B 23 100302
[32] Kimura G 2003 Phys. Lett. A 314 339
[33] Gell-Mann M 1962 Phys. Rev. 125 1067
[34] Zheng Y L, Zhen Y Z, Cao W F, Li L, Chen Z B, Liu N L and Chen K 2017 Phys. Rev. A 95 032128
[35] Peng Y, Jiang Y and Fan H 2016 Phys. Rev. A 93 032326
[36] Zhang H, Zhang C, Hu X M, Liu B H, Huang Y F, Li C F and Guo G C 2019 Phys. Rev. A 99 052301
[37] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[38] Fan X G, Sun W Y, Ding Z Y, Ming F, Yang H, Wang D and Ye L 2019 New J. Phys. 21 093053
[39] Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301
[40] Hu M L, Wang X M and Fan H 2018 Phys. Rev. A 98 032317
[41] Ding Z Y, Yang H, Wang D, Yuan H, Yang J and Ye L 2019 Phys. Rev. A 100 022308
[42] Chitambar E and Gour G 2019 Rev. Mod. Phys. 91 025001
[1] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[2] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[3] Majorana stellar representation for mixed-spin (s, 1/2) systems
Yu-Guo Su(苏玉国), Fei Yao(姚飞), Hong-Bin Liang(梁宏宾), Yan-Ming Che(车彦明), Li-Bin Fu(傅立斌), and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2021, 30(3): 030303.
[4] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
[5] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[6] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[7] Hopf bifurcation control of a Pan-like chaotic system
Liang Zhang(张良), JiaShi Tang(唐驾时), Qin Han(韩芩). Chin. Phys. B, 2018, 27(9): 094702.
[8] Time-energy high-dimensional one-side device-independent quantum key distribution
Hai-Ze Bao(包海泽), Wan-Su Bao(鲍皖苏), Yang Wang(汪洋), Rui-Ke Chen(陈瑞柯), Hong-Xin Ma(马鸿鑫), Chun Zhou(周淳), Hong-Wei Li(李宏伟). Chin. Phys. B, 2017, 26(5): 050302.
[9] Controlled remote implementation of quantum operations with high-dimensional systems
Zhan You-Bang (詹佑邦), Li Xiao-Wei (李晓薇), Ma Peng-Cheng (马鹏程), Shi Jin (施锦). Chin. Phys. B, 2013, 22(4): 040306.
[10] Probabilistic joint remote preparation of a high-dimensional equatorial quantum state
Zhan You-Bang(詹佑邦),Zhang Qun-Yong(张群永), and Shi Jin(施锦). Chin. Phys. B, 2010, 19(8): 080310.
[11] Painlevé properties and exact solutions for the high-dimensional Schwartz Boussinesq equation
Ren Bo(任博) and Lin Ji(林机). Chin. Phys. B, 2009, 18(3): 1161-1167.
[12] Controlled teleportation of high-dimension quantum-states with generalized Bell-state measurement
Zhan You-Bang(詹佑邦). Chin. Phys. B, 2007, 16(9): 2557-2562.
No Suggested Reading articles found!