Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064213    DOI: 10.1088/1674-1056/ac46c7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements

Qi-Wei Wang(王启伟)1, Shi Qiu(邱石)1, Jin-Hui Yuan(苑金辉)1,2,†, Gui-Yao Zhou(周桂耀)3, Chang-Ming Xia(夏长明)3, Yu-Wei Qu(屈玉玮)1, Xian Zhou(周娴)2, Bin-Bin Yan(颜玢玢)1, Qiang Wu(吴强)4,‡, Kui-Ru Wang(王葵如)1, Xin-Zhu Sang(桑新柱)1, and Chong-Xiu Yu(余重秀)1
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Research Center for Convergence Networks and Ubiquitous Services, University of Science&Technology Beijing, Beijing 100083, China;
3 Guangzhou Key Laboratory for Special Fiber Photonic Devices, South China Normal University, Guangzhou 510006, China;
4 Department of Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1;
8 ST, United Kingdom
Abstract  Hollow-core negative curvature fibers (HC-NCFs) have become one of the research hotspots in the field of optical fiber because of their potential applications in the data and energy transmissions. In this work, a new kind of single-polarization single-mode HC-NCF with nested U-type cladding elements is proposed. To achieve the single-polarization single-mode transmission, we use two different silica tubes in thickness, which satisfy the resonance and anti-resonance conditions on the U-type cladding elements and the cladding tubes, respectively. Besides, the elliptical elements are introduced to achieve good single-mode performance. By studying the influences of the structure parameters on the propagation characteristics, the optimized structure parameters are obtained. The simulation results show that when the wavelength is fixed at 1550 nm, the single-polarization single-mode transmission is achieved, with the polarization extinction ratio of 25749 and minimum high-order mode extinction ratio of 174. Furthermore, the confinement loss is only 0.0015 dB/m.
Keywords:  hollow-core negative curvature fiber      single-polarization      single-mode      finite element method  
Received:  01 November 2021      Revised:  22 December 2021      Accepted manuscript online:  29 December 2021
PACS:  42.81.Gs (Birefringence, polarization)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61935007).
Corresponding Authors:  Jin-Hui Yuan, Qiang Wu     E-mail:  yuanjinhui81@bupt.edu.cn;qiang.wu@northumbria.ac.uk

Cite this article: 

Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀) Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements 2022 Chin. Phys. B 31 064213

[1] Vincetti L and Setti V 2010 Opt. Express 18 23133
[2] Pryamikov A D and Biriukov A S and Kosolapov A F and Plotnichenko and Semjonov S L and Dianov E 2011 Opt. Express 19 1441
[3] Wei C, Weiblen R J and Menyuk C R and Hu J 2017 Adv. Opt. Photon. 9 504
[4] Zhao X T and Xiong Q and Jiang G H and Cheng J R and Wang S T 2018 Opt. Fiber Technol. 46 167
[5] Kolyadin A N and Alagashev G K and Pryamikov A D and Mouradian L and Zeytunyan A and Toneyan H and Kosolapov A F and Bufetov I A 2015 Phys. Rep. 73 59
[6] Belardi W and Knight J C J O L 2014 Opt. Lett. 39 1853
[7] Liu M and Hou J Y and Yang X and Zhao B Y and Shum P 2018 Chin. Phys. B 27 014206
[8] Haakestad M W, Causality J S and Kramers-Kronig 2005 Opt. Express 13 9922
[9] Argyros A and Pla J 2007 Opt. Express 15 7713
[10] Broeng J, Barkou S E, Sondergaard T and Bjarklev A 2000 Opt. Lett. 25 96
[11] Zhang Y S, Yuan J H, Qu Y W, Zhou X, Yan B B, Wu Q, Wang K R, Sang X Z, Long K P and Yu C X 2020 Chin. Phys. B 29 034208
[12] Yu F, Wadsworth W J and Knight J C 2012 Opt. Express 20 11153
[13] Hasan M I, Akhmediev N and Chang W 2017 Opt. Lett. 42 703
[14] Yu T Y, Liu X and Fan Z W 2017 IEEE Photon. J. 10 1
[15] Nawazuddin M B S, Wheeler N V, Hayes J R, Sandoghchi S R, Bradley T D, Jasion G T, Slavík R, Richardson D J and Poletti F 2017 J. Lightw. Technol. 36 1213
[16] Provino L J F 2018 Fibers 6 42
[17] Qiu S, Yuan J H, Zhou X, Li F, Wang Q W, Qu Y W, Yan B B, Wu Q, Wang K R, Sang X Z, Long K P and Yu C X 2020 Sensors 20 6539
[18] Fu B, Li S G, Yao Y Y, Zhang L and Zhang M Y 2011 Chin. Phys. B 20 024209
[19] Goel C and Yoo S 2020 CLEO: Applications and Technology, Optical Society of America, May 10-15, 2020, Washington DC, USA, pp. JW2E. 2
[20] Ankan I M, Mollah M A, Paul A K and Chakrabarti K 2020 IEEE Region 10 Symposium, June 5-7, 2020, Dhaka, Bangladesh, p. 612
[21] Yan S B, Lou S Q, Lian Z G, Zhang W and Wang X 2019 J. Lightw. Technol. 37 5707
[22] Yan S B, Lian Z G, Lou S Q, Wang X, Zhang W and Tang Z J 2020 IEEE Access 8 53419
[23] Ding W and Wang Y Y 2015 Opt. Express 23 21165
[24] Mousavi S A, Richardson D J, Sandoghchi S R and Poletti F 2015 European Conference on Optical Communication September 27-October 1, 2015, Valencia, Spain, p. 1
[25] Fini J M, Nicholson J W, Mangan B, Meng L, Windeler R S, Monberg E M, DeSantolo A, DiMarcello F V and Mukasa K 2014 Nat. Commun. 5 1
[26] Wei C L, Menyuk C R and Hu J 2018 Opt. Express 26 9528
[27] Yan S B, Lou S Q, Zhang W and Lian Z G 2018 Opt. Express 26 31160
[28] Yerolatsitis S, Shurvinton R, Song P, Zhang Y P, Francis-Jones R J A and Rusimova K R 2020 J. Lightw. Technol. 38 5157
[29] Habib M S, Bang O and Bache M 2016 Opt. Express 24 8429
[30] Meng F C, Liu B W, Li Y F, Wang C F and Hu M L 2016 IEEE Photon. J. 9 1
[1] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding
Shuai Sun(孙帅), Wei Shi(史伟), Quan Sheng(盛泉), Shijie Fu(付士杰), Zhongbao Yan(闫忠宝), Shuai Zhang(张帅), Junxiang Zhang(张钧翔), Chaodu Shi(史朝督), Guizhong Zhang(张贵忠), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(12): 124205.
[4] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[5] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[6] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[7] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[8] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[9] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[10] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[11] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[12] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[13] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[14] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[15] Self-starting all-fiber PM Er: laser mode locked by a biased nonlinear amplifying loop mirror
Ke Yin(殷科), Yi-Ming Li(李仪茗), Yan-Bin Wang(王彦斌), Xin Zheng(郑鑫), Tian Jiang(江天). Chin. Phys. B, 2019, 28(12): 124203.
No Suggested Reading articles found!