Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 045202    DOI: 10.1088/1674-1056/ac43ac
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

The intermittent excitation of geodesic acoustic mode by resonant Instanton of electron drift wave envelope in L-mode discharge near tokamak edge

Zhao-Yang Liu(刘朝阳)1,†, Yang-Zhong Zhang(章扬忠)2, Swadesh Mitter Mahajan3, A-Di Liu(刘阿娣)4, Chu Zhou(周楚)4, and Tao Xie(谢涛)5
1 Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230026, China;
3 Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712, USA;
4 School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China;
5 School of Science, Sichuan University of Science and Engineering, Zigong 643000, China
Abstract  There are two distinct phases in the evolution of drift wave envelope in the presence of zonal flow. A long-lived standing wave phase, which we call the Caviton, and a short-lived traveling wave phase (in radial direction) we call the Instanton. Several abrupt phenomena observed in tokamaks, such as intermittent excitation of geodesic acoustic mode (GAM) shown in this paper, could be attributed to the sudden and fast radial motion of Instanton. The composite drift wave—zonal flow system evolves at the two well-separate scales:the micro-scale and the meso-scale. The eigenmode equation of the model defines the zero-order (micro-scale) variation; it is solved by making use of the two-dimensional (2D) weakly asymmetric ballooning theory (WABT), a theory suitable for modes localized to rational surface like drift waves, and then refined by shifted inverse power method, an iterative finite difference method. The next order is the equation of electron drift wave (EDW) envelope (containing group velocity of EDW) which is modulated by the zonal flow generated by Reynolds stress of EDW. This equation is coupled to the zonal flow equation, and numerically solved in spatiotemporal representation; the results are displayed in self-explanatory graphs. One observes a strong correlation between the Caviton-Instanton transition and the zero-crossing of radial group velocity of EDW. The calculation brings out the defining characteristics of the Instanton:it begins as a linear traveling wave right after the transition. Then, it evolves to a nonlinear stage with increasing frequency all the way to 20 kHz. The modulation to Reynolds stress in zonal flow equation brought in by the nonlinear Instanton will cause resonant excitation to GAM. The intermittency is shown due to the random phase mixing between multiple central rational surfaces in the reaction region.
Keywords:  zonal flow      drift wave      Instanton      L-H mode  
Received:  12 July 2021      Revised:  19 November 2021      Accepted manuscript online:  16 December 2021
PACS:  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Dm (Sound waves)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1967206, 11975231, 11805203, and 11775222), the National MCF Energy Research and Development Program, China (Grant Nos. 2018YFE0311200 and 2017YFE0301204), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SYS004).
Corresponding Authors:  Zhao-Yang Liu     E-mail:  lzy0928@mail.ustc.edu.cn

Cite this article: 

Zhao-Yang Liu(刘朝阳), Yang-Zhong Zhang(章扬忠), Swadesh Mitter Mahajan, A-Di Liu(刘阿娣), Chu Zhou(周楚), and Tao Xie(谢涛) The intermittent excitation of geodesic acoustic mode by resonant Instanton of electron drift wave envelope in L-mode discharge near tokamak edge 2022 Chin. Phys. B 31 045202

[1] Diamond P H, Itoh S I, Itoh K and Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35
[2] Fujisawa A 2009 Nucl. Fusion 49 013001
[3] Miki K, Kishimoto Y, Miyato N and Li J Q 2007 Phys. Rev. Lett. 99 145003
[4] Miki K, Kishimoto Y, Li J Q and Miyato N 2008 Phys. Plasmas 15 052309
[5] Storelli A, Vermare L, Hennequin P, Gurcan O D, Dif-Pradalier G, Sarazin Y, Garbet X, Gorler T, Singh R, Morel P, et al. 2015 Phys. Plasmas 22 062508
[6] Gurchenko A D, Gusakov E Z, Niskala P, Altukhov A B, Esipov L A, Kiviniemi T P, Korpilo T, Kouprienko D V, Lashkul S I, Leerink S, Perevalov A A and Irzak M A 2016 Plasma Phys. Control. Fusion 58 044002
[7] Liu Z Y, Zhang Y Z, Mahajan S M, Liu Adi, Xie T, Zhou C, Lan T, Xie J L, Li H, Zhuang G and Liu W D 2021 Plasma Sci. Technol. 23 035101
[8] Zhang Y Z, Liu Z Y, Xie T, Mahajan S M and Liu J 2017 Phys. Plasmas 24 122304
[9] Tang W M 1978 Nucl. Fusion 18 1089
[10] Tsang K T 1977 Nucl. Fusion 17 261
[11] Horton W, Estes Jr R D, Kawk H and Choi D I 1978 Phys. Fluids 21 1366
[12] Chen L and Cheng C Z 1980 Phys. Fluids 23 2242
[13] Zhang Y Z, Mahajan S M and Zhang X D 1992 Phys. Fluids B 4 2729
[14] Zhang Y Z and Mahajan S M 1992 Phys. Fluids B 4 207
[15] Xie T, Qin H, Zhang Y Z and Mahajan S M 2016 Phys. Plasmas 23 042514
[16] Pearlstein L D and Berk H L 1969 Phys. Rev. Lett. 23 220
[17] Ross D W and Mahajan S M 1978 Phys. Rev. Lett. 40 324
[18] Tsang K T, Catto P J, Whitson J C and Smith J 1978 Phys. Rev. Lett. 40 327
[19] Cheng C Z and Chen L 1980 Phys. Fluids 23 1770
[20] Johnson R S 2005 Singular Perturbation Theory (New York:Springer) Chapter 4
[21] Zhang Y Z and Mahajan S M 1991 Phys. Lett. A 157 133
[22] Dewar R L, Zhang Y Z and Mahajan S M 1995 Phys. Rev. Lett. 74 4563
[23] Zhang Y Z and Xie T 2013 Nucl. Fusion Plasma Phys. 33 193 (in Chinese)
[24] Lee Y C and Van Dam J W September 1977 in Proceedings of the Finite Beta Theory Workshop, Varenna Summer School of Plasma Physics, Varenna, Italy, edited by Coppi B and Sadowski B (U.S. Department of Energy, Office of Fusion Energy 1979 Washington DC) CONF-7709167 p. 93
[25] Hillesheim J C, Peebles W A, Carter T A, Schmitz L and Rhodes T L 2012 Phys. Plasmas 19 022301
[26] Sewell G 2005 Computational Methods of Linear Algebra, 2nd edn. (A John Wiley & Sons, Inc., Hoboken, NJ) Sec. 3.5 p. 12
[27] Xie T, Zhang Y Z, Mahajan S M, Liu Z Y and Hongda He 2016 Phys. Plasmas 23 102313
[28] Zhang Y Z and Mahajan S M 1995 Phys. Plasma 2 4236
[29] Chakrabarti N, Singh R, Kaw P K and Guzdar P N 2007 Phys. Plasmas 14 052308
[30] Hirshman S P and Sigmar D J 1981 Nucl. Fusion 21 1079
[31] Shaing K C, Ida K and Sabbagh S A 2015 Nucl. Fusion 55 125001
[32] Smolyakov A I, Bashir M F, Elfimov A G, Yagi M and Miyato N 2016 Plasma Physics Reports 42 407
[33] Hager R and Hallatschek K 2009 Phys. Plasmas 16 072503
[34] Palermo F, Poli E, Bottino A, Biancalani A, Conway G D and Scott B 2017 Phys. Plasmas 24 072503
[35] Liu A D, Lan T, Yu C X, Zhang W, Zhao H L, Kong D F, Chang J F and Wan B N 2010 Plasma Phys. Control. Fusion 52 085004
[36] Hillesheim J C, Peebles W A, Rhodes T L, Schmitz L, White A E and Cater T A 2010 Rev. Sci. Instrum. 81 10D907
[37] Conway G D, Scott B, Schirmer J, Reich M, Kendl A and the ASDEX Upgrade Team 2005 Plasma Phys. Control. Fusion 47 1165
[38] Melnikov A V, Vershkov V A, Eliseev L G, Grashin S A, Gudozhnik A V, Krupnik L I, Lysenko S E, Mavrin V A, Perfilov S V, Shelukhin D A, et al. 2006 Plasma Phys. Control. Fusion 48 S87
[39] Ido T, Miura Y, Hoshino K, Kamiya K, Hamada Y, Nishizawa A, Kawasumi Y, Ogawa H, Nagashima Y, Shinohara K, Kusama Y and JFT-2M group 2006 Nucl. Fusion 46 512
[40] Cheng J, Yan L W, Zhao K J, Dong J Q, Hong W Y, Qian J, Yang Q W, Ding X T, Duan X R and Liu Y 2009 Nucl. Fusion 49 085030
[41] Geng K N, Kong D F, Liu A D, Lan T, Yu C X, Zhao H L, Yan L W, Cheng J, Zhao K J, Dong J Q, et al. 2018 Phys. Plasmas 25 012317
[42] Silva C, Arnoux G, Groth M, Hidalgo C, Marsen S and JET-EFDA Contributors 2013 Plasma Phys. Control. Fusion 55 025001
[43] Silva C, Hillesheim J C, Hidalgo C, Belonohy E, Delabie E, Gil L, Maggi C F, Meneses L, Solano E, Tsalas M and JET Contributors 2016 Nucl. Fusion 56 106026
[44] Zhou C, Liu A D, Liu Z Y, Wang M Y, Xi F, Zhang J, Ji J X, Fan H R, Shi T H, Liu H Q, et al. 2018 Nucl. Fusion 58 106009
[45] Itoh K, Itoh S I, Diamond P H, Fujisawa A, Yagi M, Watari T, Nagashima Y and Fukuyama A 2006 Plasma Fusion Res. 1 037
[46] Connor J W, Hastie R J and Taylor J B 1979 Proc. R. Soc. London Ser. A 365 1720
[47] Hastie R J, Hesketh K W and Taylor J B 1979 Nucl. Fusion 19 1223
[48] Taylor J B, Wilson H R and Connor J W 1996 Plasma Phys. Control. Fusion 38 243
[49] Dewar R L, Manickam J, Grimm R C and Chance M S 1981 Nucl. Fusion 21 493
[50] Dewar R L 1987 Theory of fusion plasma in Proceedings of the Workshop, Held at Villa Cipressi-Varenna, Italy, edited by Bondeson A, Sindoni E and Troyon F (Editrice Compositori Societa Italiana di Fisica, Bologna, Italy, 1988) p. 107
[51] Zonca F and Chen L 1996 Phys. Plasma 3 323
[52] Van Dam J W 1979 Kinetic Theory of Ballooning Instabilities, PPG-415, UCLA. Section 3.4 "The representation of Connor, Hastie and Taylor" pp. 101-106
[53] Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448
[54] Novakovskii S V, Liu C S, Sagdeev R Z and Rosenbluth M N 1997 Phys. Plasmas 4 4272
[55] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes-The Art of Scientific Computing, 3rd edn. (New York:Cambridge University Press)
[1] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[2] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[3] A more general form of lump solution, lumpoff, and instanton/rogue wave solutions of a reduced (3+1)-dimensional nonlinear evolution equation
Panfeng Zheng(郑攀峰), Man Jia(贾曼). Chin. Phys. B, 2018, 27(12): 120201.
[4] The interaction between zonal flow and Rossby waves with scalar nonlinearity
Zhang Xi-Ping (张喜平), Zhao Qiang (赵强). Chin. Phys. B, 2014, 23(6): 064703.
[5] Tokamak residual zonal flow level in near-separatrix region
Shi Bing-Ren(石秉仁). Chin. Phys. B, 2010, 19(9): 095201.
[6] Entropy and topology of the Kerr-de Sitter black hole
Chen Song-Bai (陈松柏), Jing Ji-Liang (荆继良). Chin. Phys. B, 2002, 11(1): 87-90.
No Suggested Reading articles found!