Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 060503    DOI: 10.1088/1674-1056/ac43a2
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors

Yue Li(李月)1, Zengqiang Chen(陈增强)1,†, Mingfeng Yuan(袁明峰)2, and Shijian Cang(仓诗建)3,‡
1 College of Artificial Intelligence, Nankai University, Tianjin 300350, China;
2 Department of Earth and Space Science and Engineering, York University, 4700 Keele St, Toronto M3 J1 P3, Canada;
3 Department of Product Design, Tianjin University of Science and Technology, Tianjin 300222, China
Abstract  Dynamical behaviors of a class-B laser system with dissipative strength are analyzed for a model in which the polarization is adiabatically eliminated. The results show that the injected signal has an important effect on the dynamical behaviors of the system. When the injected signal is zero, the dissipative term of the class-B laser system is balanced with external interference, and the quasi-periodic flows with conservative phase volume appear. And when the injected signal is not zero, the stable state in the system is broken, and the attractors (period, quasi-period, and chaos) with contractive phase volume are generated. The numerical simulation finds that the system has not only one attractor, but also coexisting phenomena (period and period, period and quasi-period) in special cases. When the injected signal passes the critical value, the class-B laser system has a fold-Hopf bifurcation and exists torus "blow-up" phenomenon, which will be proved by theoretical analysis and numerical simulation.
Keywords:  conservative flows      dissipative attractors      coexisting phenomena      fold-Hopf bifurcation      class-B laser chaotic system  
Received:  22 September 2021      Revised:  21 November 2021      Accepted manuscript online:  16 December 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61973175) and the Natural Science Foundation of Tianjin (Grant Nos. 20JCYBJC01060 and 20JCQNJC01450).
Corresponding Authors:  Zengqiang Chen, Shijian Cang     E-mail:;

Cite this article: 

Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建) The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors 2022 Chin. Phys. B 31 060503

[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Matsumoto T 1984 IEEE Trans. Circuits Syst. 31 1055
[3] Rössler O E 1976 Phys. Lett. A 57 397
[4] Chen G R and Ueta T 1999 Int. J. Bifurcat. Chaos 9 1465
[5] Wang F P and Wang F Q 2020 Chin. Phys. B 29 058502
[6] Lei Y M and Zhang H X 2017 Chin. Phys. B 26 030502
[7] Zhao C and Wu B 2021 Chin. Phys. Lett. 38 030502
[8] Cang S J, Li Y, Kang Z J and Wang Z H 2020 Chaos 30 033103
[9] Cang S J, Li Y, Xue W, Wang Z H and Chen Z Q 2020 Nonlinear Dyn. 99 1699
[10] Li Y, Chen Z Q, Wang Z H and Cang S J 2021 Int. J. Bifurcat. Chaos 31 2150198
[11] Dong E Z, Li R H and Du S Z 2021 Chin. Phys. B 30 020505
[12] Qi G Y, Hu J B and Wang Z 2020 Appl. Math. Model. 78 350
[13] Qi G Y 2019 Appl. Math. Model. 95 2063
[14] Wang H B, Jiang W H and Ding Y T 2015 Nonlinear Dyn. 79 2421
[15] Yamada T and Graham R 1980 Phys. Rev. Lett. 45 1322
[16] Lugiato L A, Narducci L M, Bandy D K and Pennise C A 1983 Opt. Commun. 46 64
[17] Arecchi F T, Lippi G L, Puccioni G P and Tredicce J R 1984 Opt. Commun. 51 308
[18] Grigorieva E V and Kaschenko S A 2018 Opt. Commun. 407 9
[19] Li Y Q 2014 Appl. Math. Comput. 226 564
[20] Politi A, Oppo G L and Badii R 1986 Phys. Rev. A 33 4055
[21] Oppo G L, Politi A, Lippi G L and Arecchi F T 1986 Phys. Rev. A 34 4000
[22] Cang S J, Li Y, Kang Z J and Wang Z H 2020 Chaos 30 033103
[23] Leonov G A, Kuznetsov N V and Vagaitsev V I 2011 Phys. Lett. A 375 2230
[24] Guckenheimer J and Kuznetsov Y A 2007 Scholarpedia 2 1855
[25] Kuznetsov Y A 2013 Elements of applied bifurcation theory (Germany: Springer Science & Business Media) p. 305
[1] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[2] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[3] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[4] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[5] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[6] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[7] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[8] A new simplified ordered upwind method for calculating quasi-potential
Qing Yu(虞晴) and Xianbin Liu(刘先斌). Chin. Phys. B, 2022, 31(1): 010502.
[9] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[10] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[11] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[12] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[13] Enhance sensitivity to illumination and synchronization in light-dependent neurons
Ying Xie(谢盈), Zhao Yao(姚昭), Xikui Hu(胡锡奎), and Jun Ma(马军). Chin. Phys. B, 2021, 30(12): 120510.
[14] Embedding any desired number of coexisting attractors in memristive system
Chunbiao Li(李春彪), Ran Wang(王然), Xu Ma(马旭), Yicheng Jiang(姜易成), and Zuohua Liu(刘作华). Chin. Phys. B, 2021, 30(12): 120511.
[15] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
No Suggested Reading articles found!