Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 030307    DOI: 10.1088/1674-1056/ac40f8
RAPID COMMUNICATION Prev   Next  

Measuring Loschmidt echo via Floquet engineering in superconducting circuits

Shou-Kuan Zhao(赵寿宽)1,2, Zi-Yong Ge(葛自勇)1,2, Zhong-Cheng Xiang(相忠诚)1, Guang-Ming Xue(薛光明)3, Hai-Sheng Yan(严海生)1,2, Zi-Ting Wang(王子婷)1,2, Zhan Wang(王战)1,2, Hui-Kai Xu(徐晖凯)3, Fei-Fan Su(宿非凡)1, Zhao-Hua Yang(杨钊华)1,2, He Zhang(张贺)1,2, Yu-Ran Zhang(张煜然)4, Xue-Yi Guo(郭学仪)1, Kai Xu(许凯)1,5, Ye Tian(田野)1, Hai-Feng Yu(于海峰)3, Dong-Ning Zheng(郑东宁)1,2,5,6, Heng Fan(范桁)1,2,5,6, and Shi-Ping Zhao(赵士平)1,2,5,6,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
4 Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan;
5 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
6 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The Loschmidt echo is a useful diagnostic for the perfection of quantum time-reversal process and the sensitivity of quantum evolution to small perturbations. The main challenge for measuring the Loschmidt echo is the time reversal of a quantum evolution. In this work, we demonstrate the measurement of the Loschmidt echo in a superconducting 10-qubit system using Floquet engineering and discuss the imperfection of an initial Bell-state recovery arising from the next-nearest-neighbor (NNN) coupling present in the qubit device. Our results show that the Loschmidt echo is very sensitive to small perturbations during quantum-state evolution, in contrast to the quantities like qubit population that is often considered in the time-reversal experiment. These properties may be employed for the investigation of multiqubit system concerning many-body decoherence and entanglement, etc., especially when devices with reduced or vanishing NNN coupling are used.
Keywords:  superconducting qubit      quantum simulation      Loschmidt echo      Floquet engineering  
Received:  23 November 2021      Revised:  02 December 2021      Accepted manuscript online:  08 December 2021
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Bg (Entanglement production and manipulation)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  85.25.Cp (Josephson devices)  
Fund: This work was supported in part by the Key-Area Research and Development Program of Guang-Dong Province, China (Grant No. 2018B030326001) and the National Key R&D Program of China (Grant No. 2017YFA0304300). Y. R. Z. was supported by the Japan Society for the Promotion of Science (JSPS) (Postdoctoral Fellowship via Grant No. P19326, and KAKENHI via Grant No. JP19F19326). H. Y. acknowledges support from the Natural Science Foundation of Beijing, China (Grant No. Z190012) and the National Natural Science Foundation of of China (Grant No. 11890704). H. F. acknowledges support from the National Natural Science Foundation of China (Grant No. T2121001), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and Beijing Natural Science Foundation, China (Grant No. Z200009).
Corresponding Authors:  Shi-Ping Zhao     E-mail:  spzhao@iphy.ac.cn

Cite this article: 

Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平) Measuring Loschmidt echo via Floquet engineering in superconducting circuits 2022 Chin. Phys. B 31 030307

[1] Gorin T, Prosen T, Seligman T H and Žnidarič M 2006 Phys. Rep. 435 33
[2] Jalabert R A and Pastawski H M 2001 Phys. Rev. Lett. 86 2490
[3] Zangara P R, Dente A D, Levstein P R and Pastawski H M 2012 Phys. Rev. A 86 012322
[4] Ho W W and Abanin D A 2017 Phys. Rev. B 95 094302
[5] Omanakuttan S and Lakshminarayan A 2021 Phys. Rev. E 103 012207
[6] Xu K, Sun Z H, Liu W X, Zhang Y R, Li H K, Dong H, Ren W H, Zhang P F, Nori F, Zheng D N, Fan H and Wang H 2020 Sci. Adv. 6 eaba4935
[7] Braumüller J, Karamlou A H, Yanay Y, Kannan B, Kim D, Kjaer-gaard M, Melville A, Niedzielski B M, Sung Y, Vepsäläinen A, Winik R, Yoder J L, Orlando T P, Gustavsson S, Tahan C and Oliver W D 2021 arXiv:2102.11751[quant-ph].
[8] Yan B, Cincio L and Zurek W H 2020 Phys. Rev. Lett. 124 160603
[9] Eckardt A 2017 Rev. Mod. Phys. 89 011004
[10] Wu Y, Yang L, Gong M, Zheng Y, Deng H, Yan Z, Zhao Y, Huang K, Castellano A D, Munro W J, Nemoto K, Zheng D, Sun C P, Liu Y X, Zhu X and Lu L 2018 npj Quantum Inf. 4 50
[11] Lu Y, Chakram S, Leung N, Earnest N, Naik R K, Huang Z, Groszkowski P, Kapit E, Koch J and Schuster D I 2017 Phys. Rev. Lett. 119 150502
[12] Reagor M, Osborn C B, Tezak N, et al. 2018 Sci. Adv. 4 eaao3603
[13] Xu Y, Hua Z, Chen T, Pan X, Li X, Han J, Cai W, Ma Y, Wang H, Song Y P, Xue Z Y and Sun L 2020 Phys. Rev. Lett. 124 230503
[14] Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Appl. 10 054009
[15] Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z, Jia S and Sun L 2019 Phys. Rev. Lett. 123 080501
[16] Zhao S K, Ge Z Y, Xiang Z C, Xue G M, Yan H S, Wang Z T, Wang Z, Xu H K, Su F F, Yang Z H, Zhang H, Zhang Y R, Guo X Y, Xu K, Tian Y, Yu H F, Zheng D N, Fan H and Zhao S P 2021 arXiv:2108.01276[quant-ph].
[17] Roushan P, Neill C, Tangpanitanon J, et al. 2017 Science 358 1175
[18] Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753
[19] Ye Y, Ge Z Y, Wu Y, et al. 2019 Phys. Rev. Lett. 123 050502
[20] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press) p. 409
[1] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[2] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[3] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[4] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[5] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[6] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[7] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[8] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[9] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[10] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[11] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[12] Review of quantum simulation based on Rydberg many-body system
Zheng-Yuan Zhang(张正源), Dong-Sheng Ding(丁冬生), and Bao-Sen Shi(史保森). Chin. Phys. B, 2021, 30(2): 020307.
[13] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[14] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[15] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
No Suggested Reading articles found!