Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 030503    DOI: 10.1088/1674-1056/ac4025
GENERAL Prev   Next  

A class of two-dimensional rational maps with self-excited and hidden attractors

Li-Ping Zhang(张丽萍)1,2, Yang Liu(刘洋)3, Zhou-Chao Wei(魏周超)4, Hai-Bo Jiang(姜海波)2,†, and Qin-Sheng Bi(毕勤胜)1
1 Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China;
2 School of Mathematics and Statistics, Yancheng Teachers University, Yancheng 224002, China;
3 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4;
4 QF, UK;
4 School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
Abstract  This paper studies a new class of two-dimensional rational maps exhibiting self-excited and hidden attractors. The mathematical model of these maps is firstly formulated by introducing a rational term. The analysis of existence and stability of the fixed points in these maps suggests that there are four types of fixed points, i.e., no fixed point, one single fixed point, two fixed points and a line of fixed points. To investigate the complex dynamics of these rational maps with different types of fixed points, numerical analysis tools, such as time histories, phase portraits, basins of attraction, Lyapunov exponent spectrum, Lyapunov (Kaplan—Yorke) dimension and bifurcation diagrams, are employed. Our extensive numerical simulations identify both self-excited and hidden attractors, which were rarely reported in the literature. Therefore, the multi-stability of these maps, especially the hidden one, is further explored in the present work.
Keywords:  two-dimensional rational map      hidden attractors      multi-stability      a line of fixed points      chaotic attractor  
Received:  13 June 2021      Revised:  31 October 2021      Accepted manuscript online:  05 December 2021
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11672257, 11772306, 11972173, and 12172340) and the 5th 333 High-level Per sonnel Training Project of Jiangsu Province of China (Grant No. BRA2018324).
Corresponding Authors:  Hai-Bo Jiang     E-mail:  yctcjhb@126.com

Cite this article: 

Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜) A class of two-dimensional rational maps with self-excited and hidden attractors 2022 Chin. Phys. B 31 030503

[1] Leonov G A and Kuznetsov N V 2013 Int. J. Bifurc. Chaos 23 1330002
[2] Leonov G A, Kuznetsov N V and Vagaitsev V I 2011 Phys. Lett. A 375 2230
[3] Leonov G A, Kuznetsov N V and Vagaitsev V I 2012 Physica D 241 1482
[4] Leonov G A, Kuznetsov N V, Kiseleva M A, Solovyeva E P and Zaretskiy A M 2014 Nonlinear Dyn. 77 277
[5] Leonov G A, Kuznetsov N V, Kuznetsova O A, Seldedzhi S M and Vagaitsev V I 2011 WSEAS Trans. Syst. Contr. 6 54
[6] Pham V T, Volos C and Kapitaniak T 2017 Systems with Hidden Attractors (Switzerland:Springer)
[7] Pisarchik A N and Feudel U 2014 Phys. Rep. 540 167
[8] Li C B and Sprott J C 2014 Int. J. Bifurc. Chaos 24 1450034
[9] Liu Y and Páez-Chávez J 2017 Nonlin. Dyn. 88 1289
[10] Tang Y X, Khalaf A J M, Rajagopal K, Pham V T, Jafari S and Tian Y 2018 Chin. Phys. B 27 040502
[11] Wei Z C, Li Y Y, Sang B, Liu Y J and Zhang W 2019 Int. J. Bifurc. Chaos 29 1950095
[12] Mira C, Gardini L, Barugola A and Cathala J C 1996 Chaotic Dynamics in Two-Dimensional Noninvertible Maps (Singapore:World Scientific)
[13] Sprott J C 1993 Strange Attractors:Creating Patterns in Chaos (New York:M&T books)
[14] Sprott J C 2010 Elegant Chaos (Singapore:World Scientific) pp. 24-30
[15] Jiang H B, Liu Y, Wei Z C and Zhang L P 2016 Nonlin. Dyn. 85 2719
[16] Jiang H B, Liu Y, Wei Z C and Zhang L P 2016 Int. J. Bifurc. Chaos 26 1650206
[17] Jiang H B, Liu Y, Wei Z C and Zhang L P 2019 Int. J. Bifurc. Chaos 29 1950094
[18] Huynh V V, Ouannas A, Wang X, Pham V T, Nguyen X Q and Alsaadi F E 2019 Entropy 21 279
[19] Luo A C J 2020 Bifurcation and Stability in Nonlinear Discrete Systems (Singapore:Springer)
[20] Ouannas A, Wang X, Khennaoui A A, Bendoukha S, Pham V T and Alsaadi F E 2018 Entropy 20 720
[21] Hadjabi F, Ouannas A, Shawagfeh N, Khennaoui A A and Grassi G 2020 Symmetry 12 756
[22] Ouannas A, Khennaoui A A, Bendoukha S, Vo T P, Pham V T and Huynh V V 2018 Appl. Sci. 8 2640
[23] Khennaoui A A, Ouannas A, Bendoukha S, Grassi G, Wang X, Pham V T and Alsaadi F E 2019 Adv. Differ. Equ. 2019 412
[24] Liu Z Y, Xia T C and Wang J B 2018 Chin. Phys. B 27 030502
[25] Ouannas A, Khennaoui A A, Momani S, Pham V T and Reyad R 2020 Chin. Phys. B 29 050504
[26] Dudkowski D, Prasad A and Kapitaniak T 2016 Chaos 26 103103
[27] Dudkowski D, Prasad A and Kapitaniak T 2017 Int. J. Bifurc. Chaos 27 1750063
[28] Danca M F and Fečan M 2019 Commun. Nonlinear Sci. Numer. Simul. 74 1
[29] Danca M F and Lampart M 2021 Chaos Solit. Fract. 142 110371
[30] Zhang L P, Jiang H B, Liu Y, Wei Z C and Bi Q S 2021 Int. J. Bifurc. Chaos 31 2150047
[31] Zhang L P, Liu Y, Wei Z C, Jiang H B and Bi Q S 2020 Chin. Phys. B 29 060501
[32] Bao B C, Li H Z, Zhu L Zhang X and Chen M 2020 Chaos 30 033107
[33] Kong S X, Li C B, Jiang H B, Lai Q and Jiang X W 2021 Chaos 31 043121
[34] Rulkov N 2002 Phys. Rev. E 65 041922
[35] Lu J, Wu X, Lu J and Kang L S 2004 Chaos Solit. Fract. 22 311
[36] Chang L, Lu J and Deng X 2005 Chaos Solit. Fract. 24 1135
[37] Elhadj Z and Sprott J C 2011 Int. J. Bifurc. Chaos 21 155
[38] Elhadj Z and Sprott J C 2011 Int. J. Open Problems Compt. Math 4 1
[39] Somarakis C and Baras J S 2013 Int. J. Bifurc. Chaos 23 1330021
[40] Chen G, Kudryashova E V, Kuznetsov N V and Leonov G A 2016 Int. J. Bifurc. Chaos 26 1650126
[41] Ouannas A, Khennaoui A A, Bendoukha S, Wang Z and Pham V T 2020 J. Syst. Sci. Complex. 33 584
[42] Kuznetsov Y A 1998 Elements of Applied Bifurcation Theory (2ed) (New York:Springer-Verlag)
[43] Leonov G A, Kuznetsov N V and Mokaev T N 2015 Commun. Nonlinear Sci. Numer. Simul. 28 166
[44] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Phys. D 16 285
[1] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[2] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[3] A novel class of two-dimensional chaotic maps with infinitely many coexisting attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(6): 060501.
[4] Novel two-directional grid multi-scroll chaotic attractors based on the Jerk system
Peng-Fei Ding(丁鹏飞), Xiao-Yi Feng(冯晓毅)†, and Cheng-Mao Wu(吴成茂). Chin. Phys. B, 2020, 29(10): 108202.
[5] A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors
Yan-Xia Tang(唐妍霞), Abdul Jalil M Khalaf, Karthikeyan Rajagopal, Viet-Thanh Pham, Sajad Jafari, Ye Tian(田野). Chin. Phys. B, 2018, 27(4): 040502.
[6] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[7] A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control
J P Singh, V T Pham, T Hayat, S Jafari, F E Alsaadi, B K Roy. Chin. Phys. B, 2018, 27(10): 100501.
[8] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[9] Multi-scroll hidden attractors and multi-wing hidden attractors in a 5-dimensional memristive system
Xiaoyu Hu(胡晓宇), Chongxin Liu(刘崇新), Ling Liu(刘凌), Yapeng Yao(姚亚鹏), Guangchao Zheng(郑广超). Chin. Phys. B, 2017, 26(11): 110502.
[10] Generation of countless embedded trumpet-shaped chaotic attractors in two opposite directions from a new three-dimensional system with no equilibrium point
Sun Chang-Chun (孙常春). Chin. Phys. B, 2014, 23(9): 090502.
[11] Generation of a novel spherical chaotic attractor from a new three-dimensional system
Sun Chang-Chun (孙常春), Zhao En-Liang (赵恩良), Xu Qi-Cheng (徐启程). Chin. Phys. B, 2014, 23(5): 050505.
[12] Novel four-dimensional autonomous chaotic system generating one-, two-, three- and four-wing attractors
Yu Fei(余飞), Wang Chun-Hua(王春华), Yin Jin-Wen(尹晋文), and Xu Hao(徐浩) . Chin. Phys. B, 2011, 20(11): 110505.
[13] The analysis of complex behaviours of a novel three dimensional autonomous system
Dong Gao-Gao (董高高), Zheng Song (郑松), Tian Li-Xin (田立新), Du Rui-Jin (杜瑞瑾), Sun Mei (孙梅). Chin. Phys. B, 2010, 19(7): 070514.
[14] Generating one-, two-, three- and four-scroll attractors from a novel four-dimensional smooth autonomous chaotic system
Sara Dadras and Hamid Reza Momeni. Chin. Phys. B, 2010, 19(6): 060506.
[15] A novel four-wing chaotic attractor generated from a three-dimensional quadratic autonomous system
Dong En-Zeng(董恩增), Chen Zai-Ping(陈在平), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉). Chin. Phys. B, 2009, 18(7): 2680-2689.
No Suggested Reading articles found!