Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020506    DOI: 10.1088/1674-1056/ac3a5e
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Energy spreading, equipartition, and chaos in lattices with non-central forces

Arnold Ngapasare1, Georgios Theocharis2, Olivier Richoux2, Vassos Achilleos2, and Charalampos Skokos1,†
1 Nonlinear Dynamics and Chaos Group, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa;
2 Laboratoire d'Acoustique de l'Université du Mans(LAUM), UMR 6613, Institut d'Acoustique-Graduate School(IA-GS), CNRS, Le Mans Université, France
Abstract  We numerically study a one-dimensional, nonlinear lattice model which in the linear limit is relevant to the study of bending (flexural) waves. In contrast with the classic one-dimensional mass-spring system, the linear dispersion relation of the considered model has different characteristics in the low frequency limit. By introducing disorder in the masses of the lattice particles, we investigate how different nonlinearities in the potential (cubic, quadratic, and their combination) lead to energy delocalization, equipartition, and chaotic dynamics. We excite the lattice using single site initial momentum excitations corresponding to a strongly localized linear mode and increase the initial energy of excitation. Beyond a certain energy threshold, when the cubic nonlinearity is present, the system is found to reach energy equipartition and total delocalization. On the other hand, when only the quartic nonlinearity is activated, the system remains localized and away from equipartition at least for the energies and evolution times considered here. However, for large enough energies for all types of nonlinearities we observe chaos. This chaotic behavior is combined with energy delocalization when cubic nonlinearities are present, while the appearance of only quadratic nonlinearity leads to energy localization. Our results reveal a rich dynamical behavior and show differences with the relevant Fermi-Pasta-Ulam-Tsingou model. Our findings pave the way for the study of models relevant to bending (flexural) waves in the presence of nonlinearity and disorder, anticipating different energy transport behaviors.
Keywords:  Anderson localization      energy spreading      energy equipartition      chaos  
Received:  16 July 2021      Revised:  29 October 2021      Accepted manuscript online:  22 November 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  42.25.Dd (Wave propagation in random media)  
  63.20.Pw (Localized modes)  
  63.20.Ry (Anharmonic lattice modes)  
Fund: Ch. S. thanks the Université du Mans for its hospitality during his visits when part of this work was carried out. We also thank the Centre for High Performance Computing (https://www.chpc.ac.za) for providing computational resources for performing significant parts of this paper's computations. A. N. acknowledges funding from the University of Cape Town (University Research Council, URC) postdoctoral Fellowship grant and the Oppenheimer Memorial Trust (OMT) postdoctoral Fellowship grant.
Corresponding Authors:  Charalampos Skokos     E-mail:  haris.skokos@uct.ac.za

Cite this article: 

Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos Energy spreading, equipartition, and chaos in lattices with non-central forces 2022 Chin. Phys. B 31 020506

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Devillard P, Dunlop F and Souillard B 1988 J. Fluid Mech. 186 521
[3] Knapp R, Papanicolaou G and White B 2020 Phys. Rev. App. 13 024023
[30] Datta P K, Giri D and Kundu K 1993 Phys. Rev. B 47 10727
[31] Lepri S, Schilling R and Aubry S 2010 Phys. Rev. E 82 056602
[32] Onorato M, Vozella L, Proment D and Lvov Y V 2015 Proc. Natl. Acad. Sci. USA 112 4208
[33] Ngapasare A, Theocharis G, Richoux O, Skokos Ch and Achilleos V 2020 Phys. Rev. B 102 054201
[34] Angel J C, Guzman J C T and de Anda A D 2019 Sci. Rep. 9 3572
[35] Qi G 2019 Nonlinear Dyn. 95 2063
[36] Qi G and Hu J 2020 Commun. Nonlinear Sci. Numer. Simulat. 84 105171
[37] Qi G, Hu J and Wang Z 2020 Appl. Math. Mod. 78 350
[38] Ouannas A, Khennaoui A A, Momani S, Pham V T and El-Khazali R 2020 Chin. Phys. B 29 050504
[39] Kosevich A M 2005 The Crystal Lattice, 2nd edn. (Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA) pp. 15-57
[40] Datta P K and Kundu K 1995 Phys. Rev. B 51 6287
[41] Blanes S, Casas F, Farrés A, Laskar J, Makazaga J and Murua A 2013 Appl. Numer. Math. 68 58
[42] Senyange B and Skokos Ch 2018 Europhys. J. Spec. Top. 227 625
[43] Danieli C, Many Manda B, Mithun T and Skokos Ch 2019 Math. Eng. 1 3
[44] Livi R, Pettini M, Ruffo S, Sparpaglione M and Vulpiani A 1985 Phys. Rev. A 31 1039
[45] Danieli C, Campbell D K and Flach S 2017 Phys. Rev. E 95 060202
[46] Goedde C G, Lichtenberg A J and Lieberman M A 1992 Physica D 59 200
[47] Benettin G, Galgani L, Giorgilli A and Strelcyn J M 1980 Meccanica 15 9
[48] Benettin G, Galgani L, Giorgilli A and Strelcyn J M 1980 Meccanica 15 21
[49] Skokos Ch 2010 Lect. Notes Phys. 790 63
[50] Contopoulos G, Galgani L and Giorgilli A 1978 Phys. Rev. A 18 1183
[51] Skokos Ch and Gerlach E 2010 Phys. Rev. E 82 036704
[52] Gerlach E and Skokos Ch 2011 Discr. Cont. Dyn. Sys. Supp. 2011 475
[53] Gerlach E, Eggl S and Skokos Ch 2012 Int. J. Bifurcation Chaos 22 1250216
[54] Skokos Ch, Gkolias I and Flach S 2013 Phys. Rev. Lett. 111 064101
[55] Senyange B, Many Manda B and Skokos Ch 2018 Phys. Rev. E 98 052229
[56] Hillebrand M, Kalosakas G, Schwellnus A and Skokos Ch 2019 Phys. Rev. E 99 022213
[57] Lvov Y V and Onorato M 2018 Phys. Rev. Lett. 120 144301
[1] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[2] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[3] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[4] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[5] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[6] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[7] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[8] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[9] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[10] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[11] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[12] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[13] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[14] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[15] A memristive map with coexisting chaos and hyperchaos
Sixiao Kong(孔思晓), Chunbiao Li(李春彪), Shaobo He(贺少波), Serdar Çiçek, and Qiang Lai(赖强). Chin. Phys. B, 2021, 30(11): 110502.
No Suggested Reading articles found!