Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 046103    DOI: 10.1088/1674-1056/ac373f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions

Jun-Yuan Yang(杨浚源)1, Zong-Kai Feng(冯棕楷)1, Ling Jiang(蒋领)1, Jie Song(宋杰)1, Xiao-Xun He(何晓珣)1, Li-Ming Chen(陈黎明)1, Qing Liao(廖庆)1, Jiao Wang(王姣)2, and Bing-Sheng Li(李炳生)1,†
1 State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China;
2 Sichuan Vocational and Technical College of Communications, Chengdu 611130, China
Abstract  Chemical disorder on the surface and lattice strain in GaN implanted by Fe10+ ions are investigated. In this study, 3-MeV Fe10+ ions fluence ranges from 1×1013 ions/cm2 to 5×1015 ions/cm2 at room temperature. X-ray photoelectron spectroscopy, high-resolution x-ray diffraction, and high-resolution transmission electron microscopy were used to characterize lattice disorder. The transition of Ga-N bonds to oxynitride bonding is caused by ion sputtering. The change of tensile strain out-of-plane with fluence was measured. Lattice disorder due to the formation of stacking faults prefers to occur on the basal plane.
Keywords:  GaN      ion implantation      chemical disorder      lattice strain      microstructure  
Received:  19 September 2021      Revised:  27 October 2021      Accepted manuscript online:  06 November 2021
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Jh (Ion radiation effects)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075194) and the Fund of Collage Student Innovation and Entrepreneurship Training Program (Grant No. S202010619053). We appreciate the staff in the 320-kV high-voltage platform in the Institute of Modern Physics, Chinese Academy of Sciences for their assistance in ion implantation experiment.
Corresponding Authors:  Bing-Sheng Li     E-mail:  libingshengmvp@163.com

Cite this article: 

Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生) Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions 2022 Chin. Phys. B 31 046103

[1] Pearton S J, Zolper J C, Shul R J and Ren F 1999 J. Appl. Phys. 86 1
[2] Sharma S and Kumar V 2021 Microprecessors and Microsystems 83 103952
[3] Mulligan P, Wang J H and Cao L 2013 Nucl. Instrum. Methods Phys. Res. A 719 13
[4] Bouziani I, Benhouria Y, Essaoudi I, Ainane A and Ahuja R 2018 Physica A 512 1249
[5] Basha S M, Ramasubramanian S, Rajagopalan M, Kumar J, Kang T W and Ganapathi N 2011 J. Crystal Growth 318 432
[6] Kozubal M A, Karolina P, Andrzej T, Renata K, Iwona S and Eliana K 2020 Mater. Sci. Semicond. Process. 122 105491
[7] Sheu J K, Chen P C, Yeh Y H, Kuo S H, Lee M L, Liao P H and Lai W C 2016 Acta Mater. 108 17
[8] Yoshino M, Sugamata K, Ikeda K, Nishimura T, Kuriyama K and Nakamura T 2019 Nucl. Instrum. Methods Phys. Res. B 449 49
[9] Zhao S R, Shi Y, Li H J and He Q Y 2010 Nucl. Instrum. Methods Phys. Res. B 268 1435
[10] Ma H, Wang X D, Chen J F, Gao X D, Zheng S N, Mao H M, Wang D, Zeng X H and Xu K 2021 Superlattices and Microstructures 156 106974
[11] Wang K, Martin R W, Nogales E, Katchkanov V, Donnell K P, Hernadez S, Lorenz K, Alves E, Ruffenech S and Briot O 2006 Opt. Mater. 28 797
[12] Yi A L, Zheng Y, Huang H, Lin J J, Yan Y Q, You T G, Huang K, Zhang S B, Shen C, Zhou M, Huang W, Zhang J X, Zhou S Q, Ou H Y and Ou X 2020 Opt. Mater. 107 109990
[13] Yan F F, Yi A L, Wang J F, Li Q, Yu P, Zhang J X, Gali A, Wang Y, Xu J S, Ou X, Li C F and Guo G C 2020 npj Quantum Information 6 38
[14] Daghbouj N, Lin J J, Sen H S, Callisti M, Li B S, Karlik M, Polcar T, Shen Z H, Zhou M, You T G and Ou X 2021 Appl. Surf. Sci. 552 149426
[15] Yang Z, Zou Z P, Zhang Z Y, Xin Y B and Wang T 2021 Materials 14 5107
[16] Li B S and Wang Z G 2015 J. Phys. D:Appl. Phys. 48 225101
[17] Kubota K, Nishimura T, Kuriyama K and Nakamura T 2019 Nucl. Instrum. Methods Phys. Res. B 451 70
[18] Li B S, Peng D P, Li J H, Kang L, Zhang T M, Zhang Z X, Jin S X, Cao X Z, Liu J H, Wu L, Fang Z Q, Zhou C L, Yang Z and Krsjak V 2021 Vacuum 184 109909
[19] Gutierrez C A H, Kudriavtsev Y, Cardona D, Hernandez A G and Anzueto J L C 2021 Opt. Mater. 111 110541
[20] Kavouras P, Komninou P and Karakostas T 2007 Thin Solid Films 515 3011
[21] Mendes P, Lorenz K, Alves E, Schwaiger S, Scholz F and Magalhaes S 2019 Mater. Sci. Semicond. Proces. 98 95
[22] Kucheyev S O, Williams J S and Pearton S J 2001 Mater. Sci. Eng. R:Resports 33 51
[23] Ronning C, Carlson E P and Davis R F 2001 Phys. Rep. 351 349
[24] Lorenz K, Wendler E, Cubero A R, Catarino N, Chauvat M P, Schwaiger S, Scholz F, Alves E and Ruterana P 2017 Acta Mater. 123 177
[25] Li B S, Wang Z G and Zhang H P 2015 Thin Solid Films 590 64
[26] Li B S, Liu H P, Xu L J, Wang J, Song J, Peng D P, Li J H, Zhao F Q, Kang L, Zhang T M, Tang H X and Xiong An L 2020 Appl. Surf. Sci. 499 143911
[27] Li B S, Liu H P, Lu X R, Kang L, Sheng Y B and Xiong An L 2019 Appl. Surf. Sci. 486 15
[28] Gloux F and Ruterana P 2006 Opt. Mater. 28 763
[29] Han Y, Peng J X, Li B S, Wang Z G, Wei K F, Shen T L, Sun J R, Zhang L M, Yao C F, Gao N, Gao X, Pang L L, Zhu Y B, Chang H L, Cui M H, Luo P, Sheng Y B, Zhang H P and He W H 2017 Nucl. Instrum. Methods in Phys. Res. B 406 543
[30] Lorenz K, Wahl U, Alves E, Wojtowicz T, Ruterana P, Ruffenach S and Briot O 2004 Superlattices and Microstructures 36 737
[31] Han L H, Zhang C H, Zhang L Q, Yang Y T, Song Y and Sun Y M 2010 Acta Phys. Sin. 59 4584 (in Chinese)
[32] Zhang L Q, Zhang C H, Xu C L, Li J J, Yang Y T, Ma Y Z, Li J Y, Liu H P, Ding Z N, Yan T X and Song Y 2017 Nucl. Instrum. Methods Phys. Res. B 406 571
[33] Jin S X, Ma H L, Lu E Y, Zhou L, Zhang Q L, Fan P, Yan Q Z, Yuan D Q, Cao X Z and Wang B Y 2021 Materials Today Energy 20 100687
[34] Jin P, Shen T L, Cui M H, Zhu Y B, Li B S, Zhang T M, Li J Y, Jin S X, Lu E Y, Cao X Z and Wang Z G 2019 J. Nucl. Mater. 520 131
[35] Zhang L M, Zhang C H, Zhang L Q, Jia X J, Han L H, Xu C L and Jin Y F 2011 Nucl. Instrum. Methods Phys. Res. B 269 1063
[36] Li B S, Liu H P, Kang L, Zhang T M, Xu L J and Xiong A L 2019 J. Eur. Cera. Soc. 39 4307
[37] Ziegler J F, Zeiger M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818
[38] G.S. Was, Taller S, Jiao Z, Monterrosa A M, Woodley D, Jennings D, Kubley T, Naab F, Toader O and Uberseder E 2017 Nucl. Instrum. Methods Phys. Res. B 412 58
[39] Prabhakaran K, Andersson T G and Nozawa K 1996 Appl. Phys. Lett. 69 3212
[40] Wolter S D, Delucca J M, Sohney S E, Kern R S and Kuo C P 2000 Thin Solid Films 371 153
[41] Zhang L M, Jiang W L, Dissanayake A, Peng J X, Ai W S, Zhang J D, Zhu Z H, Wang T S and Shutthanandan V 2016 J. Appl. Phys. 119 245704
[42] Harafuji K and Kawamura K 2010 Jpn. J. Appl. Phys. 47 1536
[43] Daghbouj N, Li B S, Callisti M, Sen H S, Lin J, Ou X, Karlik K and Polcar T 2020 Acta Mater. 188 609
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[6] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[7] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[8] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[9] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[10] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[11] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[12] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[13] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[14] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[15] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
No Suggested Reading articles found!