Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014702    DOI: 10.1088/1674-1056/ac339a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Speedup of self-propelled helical swimmers in a long cylindrical pipe

Ji Zhang(张骥)1, Kai Liu(刘凯)1, and Yang Ding(丁阳)1,2,†
1 Beijing Computational Science Research Center, Beijing 100193, China;
2 Beijing Normal University, Beijing 100875, China
Abstract  Pipe-like confinements are ubiquitously encountered by microswimmers. Here we systematically study the ratio of the speeds of a force- and torque-free microswimmer swimming in the center of a cylindrical pipe to its speed in an unbounded fluid (speed ratio). Inspired by E. coli, the model swimmer consists of a cylindrical head and a double-helical tail connected to the head by a rotating virtual motor. The numerical simulation shows that depending on swimmer geometry, confinements can enhance or hinder the swimming speed, which is verified by Reynolds number matched experiments. We further developed a reduced model. The model shows that the swimmer with a moderately long, slender head and a moderately long tail experiences the greatest speed enhancement, whereas the theoretical speed ratio has no upper limit. The properties of the virtual motor also affect the speed ratio, namely, the constant-frequency motor generates a greater speed ratio compared to the constant-torque motor.
Keywords:  microswimmer      confinement      low Reynolds number      creeping flow  
Received:  13 September 2021      Revised:  14 October 2021      Accepted manuscript online:  27 October 2021
PACS:  47.15.G (Low-Reynolds-number (creeping) flows)  
  47.63.Gd (Swimming microorganisms)  
  87.17.Jj (Cell locomotion, chemotaxis)  
  87.16.Qp (Pseudopods, lamellipods, cilia, and flagella)  
Corresponding Authors:  Yang Ding     E-mail:  dingyang@csrc.ac.cn

Cite this article: 

Ji Zhang(张骥), Kai Liu(刘凯), and Yang Ding(丁阳) Speedup of self-propelled helical swimmers in a long cylindrical pipe 2022 Chin. Phys. B 31 014702

[1] Ai Y, Xie R, Xiong J and Liang Q 2020 Small 16 1903940
[2] Alapan Y, Yasa O, Yigit B, Yasa I C, Erkoc P and Sitti M 2019 Annual Review of Control, Robotics, and Autonomous Systems 2 205
[3] Xu D, Wang Y, Liang C, You Y, Sanchez S and Ma X 2020 Small 16 1902464
[4] Troccaz J and Bogue R 2008 Industrial Robot: An International Journal
[5] Magdanz V, Koch B, Sanchez S and Schmidt O G 2015 Small 11 781
[6] Liu C, Zhou C, Wang W and Zhang H P 2016 Phys. Rev. Lett. 117 198001
[7] Ledesma-Aguilar R and Yeomans J M 2013 Phys. Rev. Lett. 111 138101
[8] Katz D F 1974 Journal of Fluid Mechanics 64 33
[9] Zhu L, Lauga E and Brandt L 2013 Journal of Fluid Mechanics 726 285
[10] Lintuvuori J S, Brown A T, Stratford K and Marenduzzo D 2016 Soft Matter 12 7959
[11] Caldag H O, Acemoglu A and Yesilyurt S 2017 Microfluidics and Nanofluidics 21 1
[12] Felderhof B 2010 Physics of Fluids 22 113604
[13] Liu B, Breuer K S and Powers T R 2014 Physics of Fluids 26 1
[14] Vizsnyiczai G, Frangipane G, Bianchi S, Saglimbeni F, Dell Arciprete D and Di Leonardo R 2020 Nat. Commun. 11 1
[15] Acemoglu A and Yesilyurt S 2014 Biophysical Journal 106 1537
[16] Berg H C and Turner L 1993 Biophysical Journal 65 2201
[17] Xing J, Bai F, Berry R and Oster G 2006 Proc. Natl. Acad. Sci. USA 103 1260
[18] Young D L, Jane S J, Fan C M, Murugesan K and Tsai C C 2006 Journal of Computational Physics 211 1
[19] Zhang J, Chinappi M and Biferale L 2021 Phys. Rev. E 103 023109
[20] Zhao L, Zhang L and Ding Y 2018 Physics of Fluids 30 032006
[21] Zöttl A 2020 Chin. Phys. B 29 074701
[22] Liron N and Shahar R 1978 Journal of Fluid Mechanics 86 727
[23] Rodenborn B, Chen C H, Swinney H L, Liu B and Zhang H 2013 Proc. Natl. Acad. Sci. USA 110 E338
[24] He-Peng Z, Bin L, Rodenborn B and Swinney H L 2014 Chin. Phys. B 23 114703
[25] Purcell E M 1977 American Journal of Physics 45 3
[26] Spagnolie S E and Lauga E 2011 Phys. Rev. Lett. 106 058103
[27] Happel J and Brenner H 1983 Low Reynolds number hydrodynamics: with special applications to particulate media (Heidelberg : Springer Science & Business Media) p. 341
[28] Chwang A and Wu T 1974 Journal of Fluid Mechanics 63 607
[29] Tillett J 1970 Journal of Fluid Mechanics 44 401
[30] Shum H, Gaffney E and Smith D 2010 Proc. Roy. Soc. A: Math. Phys. Engin. Sci. 466 1725
[31] Lighthill J 1976 SIAM Review 18 161
[32] Gluckman M J, Pfeffer R and Weinbaum S 1971 Journal of Fluid Mechanics 50 705
[33] Brennen C, Winet H 1977 Annual Review of Fluid Mechanics 9 339
[34] Jawed M K, Khouri N K, Da F, Grinspun E and Reis P M 2015 Phys. Rev. Lett. 115 168101
[35] Vogel R and Stark H 2012 Euro. Phys. J. E 35 1
[36] Jawed M K and Reis P M 2016 Soft Matter 12 1898
[1] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[2] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[3] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[4] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[5] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[6] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[7] A composite micromotor driven by self-thermophoresis and Brownian rectification
Xin Lou(娄辛), Nan Yu(余楠), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2021, 30(11): 114702.
[8] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[9] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[10] Active Brownian particles simulated in molecular dynamics
Liya Wang(王丽雅), Xinpeng Xu(徐新鹏), Zhigang Li(李志刚), Tiezheng Qian(钱铁铮). Chin. Phys. B, 2020, 29(9): 090501.
[11] Simulation of microswimmer hydrodynamics with multiparticle collision dynamics
Andreas Z?ttl. Chin. Phys. B, 2020, 29(7): 074701.
[12] Self-assembled vesicle-colloid hybrid swimmers: Non-reciprocal strokes with reciprocal actuation
Jaime Agudo-Canalejo, Babak Nasouri. Chin. Phys. B, 2020, 29(6): 064704.
[13] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[14] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[15] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
No Suggested Reading articles found!