Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014207    DOI: 10.1088/1674-1056/ac3394
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wavelength and sensitivity tunable long period gratings fabricated in fluid-cladding microfibers

Wa Jin(金娃)1,2,†, Linke Zhang(张林克)2, Xiang Zhang(张祥)2, Ming Xu(徐铭)2, Weihong Bi(毕卫红)1,2, and Yuefeng Qi(齐跃峰)1,2
1 Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qin Huangdao 066004, China;
2 School of Information Science and Engineering, Yanshan University, Qin Huangdao 066004, China
Abstract  We report the fabrication of long period gratings in fluid-cladding microfibers by directly focusing a femtosecond laser beam on the microfibers surface to induce periodical modification a long one side of the microfibers. A long period grating is fabricated in a water-cladding microfiber with a diameter of ~ 5 μm, which demonstrates a resonant attenuation of 28.53 dB at wavelength of 1588.1 nm with 10 pitches. When water cladding is changed to be refractive index oil of n=1.33 and alcohol solution with concentration of 5%, the resonance wavelength shifts to 1575.1 nm with resonant attenuation of 24.91 dB and 1594.1 nm with resonant attenuation of 35.9 dB, respectively. The long period grating demonstrates different temperature sensitivities of -0.524 nm/℃, -0.767 nm/℃ and -1.316 nm/℃ for water, alcohol solution and refractive index oil cladding microfibers, respectively, which means the alterable liquid cladding allows the availability of tunable wavelength and sensitivity. The fluid-cladding protects the microfibers from external disturbance and contamination and allows more flexibility in controlling the transmission property and sensing characteristics of long period gratings, which can be used as fiber devices and sensors for chemical, biological, and environmental applications.
Keywords:  fluid-cladding microfiber      long-period grating      temperature  
Received:  04 August 2021      Revised:  20 October 2021      Accepted manuscript online:  27 October 2021
PACS:  42.81.-i (Fiber optics)  
  42.81.Pa (Sensors, gyros)  
  42.81.Bm (Fabrication, cladding, and splicing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605168 and 61735011), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2016203392 and F2021203058), the College and University Science and Technology Research Project of Hebei Province, China (Grant No. QN2016078), and the Intramural Doctoral Foundation of Yanshan University (Grant No. B1011).
Corresponding Authors:  Wa Jin     E-mail:  jinwa@ysu.edu.cn

Cite this article: 

Wa Jin(金娃), Linke Zhang(张林克), Xiang Zhang(张祥), Ming Xu(徐铭), Weihong Bi(毕卫红), and Yuefeng Qi(齐跃峰) Wavelength and sensitivity tunable long period gratings fabricated in fluid-cladding microfibers 2022 Chin. Phys. B 31 014207

[1] Chiang K S, Lor K P, Chow C K, Chan H P, Rastogi V and Chu Y M 2003 IEEE Photonics Technology Letters 15 1094
[2] Ceballos Herrera D E, Torres Gómez I, Martínez Ríos A, Anzueto Sánchez G, Alvarez Chávez J A, Selvas Aguilar R and Sánchez Mondragón J J 2007 Appl. Opt. 46 307
[3] Kwon M S and Shin S Y 2014 IEEE Photonics Technology Letters 17 145
[4] Shu X W, Allsop T, Gwandu B, Zhang L and Bennion I 2001 IEEE Photonics Technology Letters 13 818
[5] Janczuk Richter M, Dominik M, Roźniecka E, Koba M, Mikulic P, Bock W J, Marcin Łoś, Mateusz śmietana and Joanna NiedzióŁka Jönsson 2017 Sensors & Actuators B Chemical 250 32
[6] Yu C B, Wu Y, Liu X L, Yao B C, Fu F, Gong Y, Rao Y J and Chen Y F 2016 Optical Materials Express 6 727
[7] Li J, Li M M, Sun L P, Fan P C, Ran Y, Jin L and Guan B O 2017 Acta Phys. Sin. 66 074209 (in Chinese)
[8] Villatoro J and Monzónhernández D 2005 Opt. Express 13 5087
[9] Cao Y, Pei Y W and Tong Z R 2014 Acta Phys. Sin. 63 024206 (in Chinese)
[10] Sumetsky M 2008 Journal of Lightwave Technology 26 21
[11] Tong L M, Lou J Y, Gattass R R, He S L, Chen X W, Liu L and Mazur E 2005 Nano Lett. 5 259
[12] Xiao L, Grogan M D W, Wadsworth W J, England R and Birks T A 2011 Opt. Express 19 764
[13] Xu F and Brambilla G 2008 Jpn. J. Appl. Phys. 47 6675
[14] Sun J C, Wang T T, Dai Y, Chang J H and Ke W 2021 Acta Phys. Sin. 70 064202 (in Chinese)
[15] Yang S, Rong Q Z, Sun H, Zhang J, Liang L, Xu Q F, Zhan S C, Du Y Y, Feng D Y, Qiao X G and Hu M L 2013 Acta Phys. Sin. 62 084218 (in Chinese)
[16] Yang Y, Xu B, Liu Y M, Li P, Wang D N and Zhao C L 2017 Acta Phys. Sin. 66 094205 (in Chinese)
[17] Yang S, Daniel H, Gary P and Wang A B 2018 Opt. Lett. 43 62
[18] Liu Z L, Xiao H F, Liao M M, Han X, Chen W P, Zhao T, Jia H, Yang J H and Tian Y H 2019 IEEE Photonics Technology Letters 31 337
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[4] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[5] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[6] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[7] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[8] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[9] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[10] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[11] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[12] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[13] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[14] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[15] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
No Suggested Reading articles found!