Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037304    DOI: 10.1088/1674-1056/ac322e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes

Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献)
Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453000, China
Abstract  MXenes are a new type of two-dimensional carbides with rich physical and chemical properties. The physics of MXenes, and thus the applications, are dominated by surface functional groups. Herein, the effects of different terminations (O, S, Se, Te) on the geometric and electronic properties of Nb2C MXenes were studied via density functional theory (DFT) calculations. Three adsorption sites were examined to determine the most stable configurations. The results showed that both the types and the positions of surface functional groups influence the geometric stability and physical characters of Nb2C. The S and Se terminations make the Nb2C MXenes to be semiconductor, while Nb2C MXenes with other terminations (O, Te) are conductor. The electron location function, density of states, Bader charge distribution, and the projected crystal orbital Hamilton population were conducted to explain the origin of adsorption stability and electronic nature difference. Our results provide a fundamental understanding about the effects of surface terminations on the intrinsic stability and electronic properties of Nb2C MXenes.
Keywords:  Nb2C MXenes      surface functional groups      geometric structure      electronic properties  
Received:  09 August 2021      Revised:  28 September 2021      Accepted manuscript online:  22 October 2021
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  63.20.dk (First-principles theory)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1804130, U2004212, 11904084, and 11874141), the Henan Overseas Expertise Introduction Center for Discipline Innovation (Grant No. CXJD2019005), the China Postdoctoral Science Foundation (Grant No. 2021M690933), and the Key Scientific Research Projects of Henan Education Department, China (Grant No. 22A140020). The simulations are performed on resources provided by the High Performance Computing Center of Henan Normal University.
Corresponding Authors:  Xilin Zhang, Zongxian Yang     E-mail:  zhangxilin@htu.edu.cn;yzx@htu.edu.cn

Cite this article: 

Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献) First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes 2022 Chin. Phys. B 31 037304

[1] Yoo E and Zhou H 2011 ACS Nano 5 3020
[2] Shen J, Zhu Y, Yang X and Li C 2012 Chem. Commun. 48 3686
[3] Song X, Guo Z, Zhang Q, Peng Z and Zhang D W 2017 Small 13 1700098
[4] Zhang J L, Han C, Hu Z, Wang L, Liu L, Wee A T S and Chen W 2018 Adv. Mater. 30 1802207
[5] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Min H, Hultman L, Gogotsi Y and Barsoum M W 2011 Adv. Mater. 23 4248
[6] Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 Adv. Mater. 26 992
[7] Anasori B, Luhatskaya M R and Gogotsi Y 2017 Nat. Rev. Mater. 2 16098
[8] Tang Q, Zhen Z and Shen P 2012 J. Am. Chem. Soc. 134 16909
[9] Er D, Li J, Naguib M, Gogotsi Y and Shenoy V B 2014 ACS Appl. Mater. Interf. 6 11173
[10] Xiao B, Li Y C, Yu X F and Cheng J B 2016 Sensor Actuat. B-Chem. 235 103
[11] Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X and Xiao B 2015 ACS Appl. Mater. Interf. 7 13707
[12] Liu J, Zhang H B, Sun R, Liu Y, Liu Z, Zhou A and Yu Z Z 2017 Adv. Mater. 29 1702367
[13] Ran J, Gao G, Li F T, Ma T Y, Du A and Qiao S Z 2017 Nat. Commun. 8 13907
[14] Si C, Zhou J and Sun Z 2015 ACS Appl. Mater. Interf. 7 17510
[15] Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y and Kawazoe Y 2013 Adv. Funct. Mater. 23 2185
[16] Kan D, Wang D, Zhang X, Lian R, Xu J, Chen G and Wei Y 2020 J. Mater. Chem. A 8 3097
[17] Kamysbayev V, Filatov A S, Hu H, Rui X, Lagunas F, Wang D, Klie R F and Talapin D V 2020 Science 369 979
[18] Pang X, Wu T, Gu Y, Wang D, Che X, Sun D and Huang F 2020 Chem. Commun. 56 9036
[19] Blöchl P E 1994 Phys. Rev. B 50 17953
[20] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[21] A G K and J F B 1996 Comp. Mater. Sci. 6 15
[22] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[25] Dronskowski R and Bloechl P E 1993 J. Phys. Chem. 97 8617
[26] Deringer V L, Tchougréeff A and Dronskowski R 2011 J. Phys. Chem. A 115 5461
[27] Maintz S, Deringer V L, Tchougréeff A and Dronskowski R 2016 J. Comput. Chem. 37 1030
[28] Nelson R, Ertural C, George J, Deringer V L, Hautier G and Dronskowski R 2020 J. Comput. Chem. 41 1931
[29] Salama I, El-Raghy T and Barsoum M W 2002 J. Alloys. Compd. 347 271
[30] Zhu J, Chroneos A and Schwingenschlgl U 2015 Phys. Status Solidi-R 9 726
[31] Qian X, Li Y, He X, Fan H and Yun S 2011 J. Phys. Chem. Solids 72 954
[32] Wang J and Zhou Y 2004 Phys. Rev. B 69 214111
[33] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[34] Silvi B and Savin A 1994 Nature 371 683
[35] Mishra A, Srivastava P, Carreras A, Tanaka I, Mizuseki H, Lee K R and Singh A K 2017 J. Phys. Chem. C 121 18947
[1] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[2] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[3] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[4] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[5] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[6] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[7] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[8] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
[9] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), and Su-Huai Wei(魏苏淮)†. Chin. Phys. B, 2020, 29(10): 108401.
[10] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[11] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[12] First-principles study on optic-electronic properties of doped formamidinium lead iodide perovskite
Xin-Feng Diao(刁心峰), Yan-Lin Tang(唐延林), Quan Xie(谢泉). Chin. Phys. B, 2019, 28(1): 017802.
[13] Pressure-induced enhancement of optoelectronic properties in PtS2
Yi-Fang Yuan(袁亦方), Zhi-Tao Zhang(张志涛), Wei-Ke Wang(王伟科), Yong-Hui Zhou(周永惠), Xu-Liang Chen(陈绪亮), Chao An(安超), Ran-Ran Zhang(张冉冉), Ying Zhou(周颖), Chuan-Chuan Gu(顾川川), Liang Li(李亮), Xin-Jian Li(李新建), Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2018, 27(6): 066201.
[14] Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study
Jun-Chao Liu(刘俊超), Zhi-Hong Yuan(袁志红), Shi-Chang Li(李世长), Xiang-Gang Kong(孔祥刚), You Yu(虞游), Sheng-Gui Ma(马生贵), Ge Sang(桑革), Tao Gao(高涛). Chin. Phys. B, 2018, 27(4): 047802.
[15] Electronic, optical, and mechanical properties of BN, AlN, and InN with zinc-blende structure under pressure
A R Degheidy, E B Elkenany. Chin. Phys. B, 2017, 26(8): 086103.
No Suggested Reading articles found!