Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 128702    DOI: 10.1088/1674-1056/ac2f30
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Continuous non-autonomous memristive Rulkov model with extreme multistability

Quan Xu(徐权), Tong Liu(刘通), Cheng-Tao Feng(冯成涛), Han Bao(包涵), Hua-Gan Wu(武花干), and Bo-Cheng Bao(包伯成)
School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
Abstract  Based on the two-dimensional (2D) discrete Rulkov model that is used to describe neuron dynamics, this paper presents a continuous non-autonomous memristive Rulkov model. The effects of electromagnetic induction and external stimulus are simultaneously considered herein. The electromagnetic induction flow is imitated by the generated current from a flux-controlled memristor and the external stimulus is injected using a sinusoidal current. Thus, the presented model possesses a line equilibrium set evolving over the time. The equilibrium set and their stability distributions are numerically simulated and qualitatively analyzed. Afterwards, numerical simulations are executed to explore the dynamical behaviors associated to the electromagnetic induction, external stimulus, and initial conditions. Interestingly, the initial conditions dependent extreme multistability is elaborately disclosed in the continuous non-autonomous memristive Rulkov model. Furthermore, an analog circuit of the proposed model is implemented, upon which the hardware experiment is executed to verify the numerically simulated extreme multistability. The extreme multistability is numerically revealed and experimentally confirmed in this paper, which can widen the future engineering employment of the Rulkov model.
Keywords:  extreme multistability      memristor      electromagnetic induction      Rulkov model  
Received:  15 July 2021      Revised:  09 October 2021      Accepted manuscript online:  13 October 2021
PACS:  87.50.-a (Effects of electromagnetic and acoustic fields on biological systems)  
  87.19.ll (Models of single neurons and networks)  
  87.23.Kg (Dynamics of evolution)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12172066, 61801054, and 51777016), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160282), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21_2823).
Corresponding Authors:  Bo-Cheng Bao     E-mail:  mervinbao@126.com

Cite this article: 

Quan Xu(徐权), Tong Liu(刘通), Cheng-Tao Feng(冯成涛), Han Bao(包涵), Hua-Gan Wu(武花干), and Bo-Cheng Bao(包伯成) Continuous non-autonomous memristive Rulkov model with extreme multistability 2021 Chin. Phys. B 30 128702

[1] Yao Z, Zhou P, Zhu Z G and Ma J 2021 Neurocomputing 423 518
[2] Xu L F, Li C D and Chen L 2016 Acta Phys. Sin. 65 240701 (in Chinese)
[3] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[4] Morris C and Lecar H 1981 Biophys. J. 35 193
[5] Chay T R 1985 Physica D 16 233
[6] Xu Q, Tan X, Zhu D, Bao H, Hu Y H and Bao B C 2020 Chaos Solitons Fractals 141 110353
[7] Wilson H R 1999 J. Theor. Biol. 200 375
[8] Hindmarsh J L and Rose R M 1982 Nature 296 162
[9] FitzHugh R 1961 Biophys. J. 1 445
[10] Izhikevich E M 1999 IEEE Trans. Neural Netw. 10 499
[11] Elson R C, Selverston A I, Huerta R, Rulkov N F, Rabinovich M I and Abarbanel H D I 1998 Phys. Rev. Lett. 81 5692
[12] Bao B C, Hu A H, Xu Q, Bao H, Wu H G and Chen M 2018 Nonlinear Dyn. 92 1695
[13] Bao H, Hu A H and Liu W B 2019 Int. J. Bifurc. Chaos 29 1950006
[14] Ge M Y, Jia Y, Xu Y and Yang L J 2018 Nonlinear Dyn. 91 515
[15] Parastesh F, Rajagopal K, Karthikeyan A, Alsaedi A, Hayat T and Pham V T 2018 Cogn. Neurodyn. 12 607
[16] Lv M and Ma J 2016 Neurocomputing 205 375
[17] Qu L H, Du L, Deng Z C, Cao Z L and Hu H W 2018 Chin. Phys. B 27 118707
[18] Yuan Z X, Feng P H, Du M M and Wu Y 2020 Chin. Phys. B 29 030504
[19] Lv M, Wang C N, Ren G D, Ma J and Song X L 2016 Nonlinear Dyn. 85 1479
[20] An X L and Qiao S 2021 Chaos Solitons Fractals 143 110587
[21] Ma J and Tang J 2017 Nonlinear Dyn. 89 1569
[22] Carpenter C J 1999 IEE Proceedings-Science, Measur. Technol. 146 182
[23] Chua L O 2015 Radioengineering 24 319
[24] Xu Q, Lin Y, Bao B C and Chen M 2016 Chaos Solitons Fractals 83 186
[25] Wu F Q, Wang C N, Xu Y and Ma J 2016 Sci. Rep. 6 28
[26] Ma J and Tang J 2017 Nonlinear Dyn. 89 1569
[27] Yu F, Zhang Z N, Shen H, Huang Y Y, Cai S, Jin J and Du S C 2021 Front. Phys. 9 690651
[28] Kafraj M S, Parastesh F and Jafari S 2020 Chaos Solitons Fractals 137 109782
[29] Wang Y, Ma J, Xu Y, Wu F Q and Zhou P 2017 Int. J. Bifurc. Chaos 27 1750030
[30] Jin W Y, Wang A, Ma J and Lin Q 2019 Sci. China Technol. Sci. 62 2113
[31] Ge M Y, Jia Y, Xu Y and Yang L J 2018 Nonlinear Dyn. 91 515
[32] Qu L H, Du L, Hu H W, Cao Z L and Deng Z C 2020 Nonlinear Dyn. 102 2739
[33] Gu H G, Pan B B and Li Y Y 2015 Nonlinear Dyn. 82 1191
[34] Bao H, Hu A H, Liu W B and Bao B C 2020 IEEE Trans. Neural Netw. Learning Sys. 31 502
[35] Lin H R, Wang C H, Sun Y C and Yao W 2020 Nonlinear Dyn. 100 3667
[36] Bao H, Liu W B and Hu A H 2019 Nonlinear Dyn. 95 43
[37] Marco M D, Forti M and Pancioni L 2017 IEEE Trans. Cybernetics 47 2970
[38] Lai Q, Hu B, Guan Z H, Li T, Zheng D F and Wu Y H 2016 Neurocomputing 207 785
[39] Tang Y X, Khalaf A J M, Rajagopal K, Pham V T, Jafari S and Tian Y 2018 Chin. Phys. B 27 040502
[40] Li C B, Xu Y J, Chen G R, Liu Y J and Zheng J C 2019 Nonlinear Dyn. 95 1245
[41] Yu F, Qian S, Chen X, Huang Y Y, Cai S, Jin J and Du S C 2021 Complexity 2021 6683284
[42] Bao H, Liu W B and Chen M 2019 Nonlinear Dyn. 96 1879
[43] Rulkov N F 2002 Phys. Rev. E 65 041922
[44] Wang G H, Peng M S, Zuo J and Cheng R R 2017 Nonlinear Dyn. 89 2553
[45] Li D, Zheng Y and Yang Y 2019 Indian J. Phys. 93 1477
[46] Bashkirtseva I, Nasyrova V and Ryashko L 2020 Int. J. Bifurc. Chaos 30 2050153
[47] Bashkirtseva I, Nasyrova V and Ryashko L 2018 Chaos Soliton Fractals 110 76
[48] Wang C X and Cao H J 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 536
[49] Sun H J and Cao H J 2016 Commun. Nonlinear Sci. Numer. Simulat. 40 15
[50] Budzinski R C, Lopes S R and Masoller C 2021 Neurocomputing 1 44
[51] Sarbendu R, Arnob R, Bera B K and Dibakar G 2018 Nonlinear Dyn. 94 785
[52] Xu Q, Song Z, Bao H, Chen M and Bao B C 2018 AEU-Int. J. Electron. Commun. 96 66
[53] Xu W, Wang Y Q, Li Y F, Gao F, Zhang M C, Lian X J, Wan X, Xiao J and Tong Y 2019 Acta Phys. Sin. 68 238501 (in Chinese)
[54] Chen J C, Chen J Q, Bao H, Chen M and Bao B C 2018 Nonlinear Dyn. 95 3385
[55] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285
[56] Bao B C, Xu Q, Bao H and Chen M 2016 Electron. Lett. 52 1008
[57] Bao H, Chen M, Wu H G and Bao B C 2020 Sci. China Tech. Sci. 63 603
[58] Jafari S, Ahmadi A, Khalaf A, Abdolmohammadi H R, Pham V T and Alsaadi F E 2018 Int. J. Electron. Commun. (AEÜ) 89 131
[59] Yuan F, Wang G Y, Shen Y R and Wang X Y 2016 Nonlinear Dyn. 86 37
[60] Bao B C, Zhu Y X, Ma J, Bao H, Wu H G and Chen M 2021 Sci. China Tech. Sci. 64 1107
[1] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[2] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
[3] SBT-memristor-based crossbar memory circuit
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚). Chin. Phys. B, 2021, 30(6): 068402.
[4] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[5] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[6] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[7] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[8] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[9] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[10] A review on the design of ternary logic circuits
Xiao-Yuan Wang(王晓媛), Chuan-Tao Dong(董传涛), Zhi-Ru Wu(吴志茹), and Zhi-Qun Cheng(程知群). Chin. Phys. B, 2021, 30(12): 128402.
[11] A memristive map with coexisting chaos and hyperchaos
Sixiao Kong(孔思晓), Chunbiao Li(李春彪), Shaobo He(贺少波), Serdar Çiçek, and Qiang Lai(赖强). Chin. Phys. B, 2021, 30(11): 110502.
[12] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[13] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
[14] A method of generating random bits by using electronic bipolar memristor
Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮). Chin. Phys. B, 2020, 29(4): 048505.
[15] Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation
Zhi-Xuan Yuan(袁治轩), Pei-Hua Feng(冯沛华), Meng-Meng Du(独盟盟), Ying Wu(吴莹). Chin. Phys. B, 2020, 29(3): 030504.
No Suggested Reading articles found!