Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 126104    DOI: 10.1088/1674-1056/ac2d1b

Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors

Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春)
Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
Abstract  The defect-related photoconductivity gain and persistent photoconductivity (PPC) observed in Ga2O3 Schottky photodetectors lead to a contradiction between high responsivity and fast recovery speed. In this work, a metal-semiconductor-metal (MSM) Schottky photodetector, a unidirectional Schottky photodetector, and a photoconductor were constructed on Ga2O3 films. The MSM Schottky devices have high gain (> 13) and high responsivity (> 2.5 A/W) at 230-250 nm, as well as slow recovery speed caused by PPC. Interestingly, applying a positive pulse voltage to the reverse-biased Ga2O3/Au Schottky junction can effectively suppress the PPC in the photodetector, while maintaining high gain. The mechanisms of gain and PPC do not strictly follow the interface trap trapping holes or the self-trapped holes models, which is attributed to the correlation with ionized oxygen vacancies in the Schottky junction. The positive pulse voltage modulates the width of the Schottky junction to help quickly neutralize electrons and ionized oxygen vacancies. The realization of suppression PPC functions and the establishment of physical models will facilitate the realization of high responsivity and fast response Schottky devices.
Keywords:  Ga2O3 Schottky photodetector      persistent photoconductivity      high gain      pulse voltage      oxygen vacancy  
Received:  07 July 2021      Revised:  25 August 2021      Accepted manuscript online:  06 October 2021
PACS:  61.72.jd (Vacancies)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872043, 51732003, and 51902049), the National Key R&D Program of China (Grant No. 2019YFA0705202), Natural Science Foundation of Jilin Province, China (Grant No. 20200201076JC), the National Basic Research Program of China (Grant No. 2012CB933703), and "111" Project (Grant No. B13013).
Corresponding Authors:  Jiangang Ma     E-mail:

Cite this article: 

Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春) Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors 2021 Chin. Phys. B 30 126104

[1] Pearton S J, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
[2] Chen M, Zhang Z, Zhan R, She J, Deng S, Xu N and Chen J 2021 Applied Surface Science 554 149619
[3] Fan M, Cao L, Xu K and Li X 2021 J. Alloys Compd. 853 157080
[4] Xu J, Zheng W and Huang F 2019 J. Mater. Chem. C 7 8753
[5] Hou X, Zou Y, Ding M, Qin Y, Zhang Z, Ma X, Tan P, Yu S, Zhou X, Zhao X, Xu G, Sun H and Long S 2021 J. Phys. D:Appl. Phys. 54 043001
[6] Tan P, Zhao X, Hou X, Yu Y, Yu S, Ma X, Zhang Z, Ding M, Xu G, Hu Q, Gao N, Sun H, Mu W, Jia Z, Tao X and Long S 2021 Adv. Opt. Mater. 9 2100173
[7] Yadav M K, Mondal A, Shringi S, Sharma S K and Bag A 2020 Semicond. Sci. Technol. 35 085009
[8] Yu Y T, Xiang X Q, Zhou X Z, Zhou K, Xu G W, Zhao X L and Long S B 2021 Chin. Phys. B 30 067302
[9] Zhao Y, Zang J H, Yang X, Chen X X, Chen Y C, Li K Y, Dong L and Shan C X 2021 Chin. Phys. B 30 078504
[10] Deak P, Ho Q D, Seemann F, Aradi B, Lorke M and Frauenheim T 2017 Phys. Rev. B 95 075208
[11] Kyrtsos A, Matsubara M and Bellotti E 2017 Phys. Rev. B 95 245202
[12] Zhang Z, Farzana E, Arehart A R and Ringel S A 2016 Appl. Phys. Lett. 108 052105
[13] Hajnal Z, Miro J, Kiss G, Reti F, Deak P, Herndon R C and Kuperberg J M 1999 J. Appl. Phys. 86 3792
[14] Zacherle T, Schmidt P C and Martin M 2013 Phys. Rev. B 87 235206
[15] Huang S S, Lopez R, Paul S, Neal A T, Mou S, Houng M P and Li J V 2018 Jpn. J. Appl. Phys. 57 091101
[16] Aller H T, Yu X, Wise A, Howell R S, Gellman A J, McGaughey A J H and Malen J A 2019 Nano Lett. 19 8533
[17] Zhang D, Zheng W, Lin R, Li Y and Huang F 2019 Adv. Funct. Mater. 29 1900935
[18] Harada T, Ito S and Tsukazaki A 2019 Sci. Adv. 5 eaax5733
[19] Hao S J, Hetzl M, Schuster F, Danielewicz K, Bergmaier A, Dollinger G, Sai Q L, Xia C T, Hoffmann T, Wiesinger M, Matich S, Aigner W and Stutzmann M 2019 J. Appl. Phys. 125 105701
[20] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725
[21] Zhou H, Cong L, Ma J, Li B, Chen M, Xu H and Liu Y 2019 J. Mater. Chem. C 7 13149)
[22] Han Z, Liang H, Huo W, Zhu X, Du X and Mei Z 2020 Adv. Opt. Mater. 8 1901833
[23] Zhou H, Cong L, Ma J, Chen M, Song D, Wang H, Li P, Li B, Xu H and Liu Y 2020 J. Alloys Compd. 847 156536
[24] Ahn J, Ma J, Lee D, Lin Q, Park Y, Lee O, Sim S, Lee K, Yoo G and Heo J 2021 ACS Photonics 8 557
[25] Cui S, Mei Z, Zhang Y, Liang H and Du X 2017 Adv. Opt. Mater. 5 1700454
[26] Jeon S, Ahn S E, Song I, Kim C J, Chung U I, Lee E, Yoo I, Nathan A, Lee S, Robertson J and Kim K 2012 Nat. Mater. 11 301
[27] Hou Q, Wang X, Xiao H, Wang C, Yang C, Yin H, Deng Q, Li J, Wang Z and Hou X 2011 Appl. Phys. Lett. 98 102104
[28] Wang Y, Liao Z, She G, Mu L, Chen D and Shi W 2011 Appl. Phys. Lett. 98 203108
[29] Liu K, Sakurai M, Aono M and Shen D 2015 Adv. Funct. Mater. 25 3157
[30] Hou M, So H, Suria A J, Yalamarthy A S and Senesky D G 2017 IEEE Electron Device Lett. 38 56
[31] Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L and Shen D 2021 J. Mater. Chem. C 9 4039
[32] Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z, Muralidharan R, Rajan S and Nath D N 2017 Appl. Phys. Lett. 110 221107
[33] Chen X, Liu K, Zhang Z, Wang C, Li B, Zhao H, Zhao D and Shen D 2016 ACS Appl. Mater. Interfaces 8 4185
[34] Oshima T, Okuno T and Fujita S 2007 Jpn. J. Appl. Phys. 46 7217
[35] Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R and Droopad R 2017 J. Appl. Phys. 122 095302
[36] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z and Shan C X 2019 J. Mater. Chem. C 7 2557
[37] Heinemann M D, Berry J, Teeter G, Unold T and Ginley D 2016 Appl. Phys. Lett. 108 022107
[38] Kim J, Sekiya T, Miyokawa N, Watanabe N, Kimoto K, Ide K, Toda Y, Ueda S, Ohashi N, Hiramatsu H, Hosono H and Kamiya T 2017 NPG Asia Mater. 9 e359
[39] Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang X and Shan C 2019 Adv. Funct. Mater. 29 1906040
[40] Li K H, Kang C H, Min J H, Alfaraj N, Liang J W, Braic L, Guo Z, Hedhili M N, Ng T K and Ooi B S 2020 ACS Appl. Mater. Interfaces 12 53932
[41] Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W and Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714
[42] Li L, Chen H, Fang Z, Meng X, Zuo C, Lv M, Tian Y, Fang Y, Xiao Z, Shan C, Xiao Z, Jin Z, Shen G, Shen L and Ding L 2020 Adv. Mater. 32 1907257
[43] Lany S and Zunger A 2005 Phys. Rev. B 72 035215
[44] Janotti A and Van de Walle C G 2005 Appl. Phys. Lett. 87 122102
[45] Ryu B, Noh H K, Choi E A and Chang K J 2010 Appl. Phys. Lett. 97 022108
[46] Xu Y, Chen X, Zhou D, Ren F, Zhou J, Bai S, Lu H, Gu S, Zhang R, Zheng Y and Ye J 2019 IEEE Trans. Electron. Dev. 66 2276
[47] Qin Y, Li L, Zhao X, Tompa G S, Dong H, Jian G, He Q, Tan P, Hou X, Zhang Z, Yu S, Sun H, Xu G, Miao X, Xue K, Long S and Liu M 2020 ACS Photonics 7 812
[48] Armstrong A M, Crawford M H, Jayawardena A, Ahyi A and Dhar S 2016 J. Appl. Phys. 119 103102
[49] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G and Tang W H 2014 Appl. Phys. Lett. 105 023507
[50] Sze S M and Ng K K 2007 Physics of Semiconductor Devices, 3rd ed. (Hoboken:Wiley)
[51] Oh S, Kim C and Kim J 2018 ACS Photonics 5 1123
[52] Qian L X, Liu H Y, Zhang H F, Wu Z H and Zhang W L 2019 Appl. Phys. Lett. 114 113506
[53] Guo D, Wu Z, Li P, Wang Q, Lei M, Li L and Tang W 2015 RSC Adv. 5 12894
[54] Shen H, Yin Y, Tian K, Baskaran K, Duan L, Zhao X and Tiwari A 2018 J. Alloys Compd. 766 601
[55] Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L and Tang W 2014 Opt. Mater. Express 4 1067
[56] Ahn S, Ren F, Oh S, Jung Y, Kim J, Mastro M A, Hite J K, Eddy C R and Pearton S J 2016 J. Vac. Sci. Technol. B 34 041207
[57] Fan M, Lu Y, Xu K, Cui Y, Cao L and Li X 2020 Applied Surface Science 509 144867
[58] Oh S, Jung Y, Mastro M A, Hite J K, Eddy Jr C R and Kim J 2015 Opt. Express 23 28300
[1] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[2] Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna
Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高军), Huan-Huan Yang(杨欢欢), and Jiang-Feng Han(韩江枫). Chin. Phys. B, 2021, 30(6): 064101.
[3] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[4] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[5] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[6] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[7] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[8] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[9] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[10] Review of photoresponsive properties at SrTiO3-based heterointerfaces
Hong Yan(闫虹), Zhaoting Zhang(张兆亭), Shuanhu Wang(王拴虎), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117804.
[11] Synergistic effects of electrical and optical excitations on TiO2 resistive device
Qi Mao(毛奇), Wei-Jian Lin(林伟坚), Ke-Jian Zhu(朱科建), Yang Meng(孟洋), Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2017, 26(8): 087702.
[12] Intrinsic luminescence centers in γ- and θ-alumina nanoparticles
Abdolvahab Amirsalari, Saber Farjami Shayesteh, Reza Taheri Ghahrizjani. Chin. Phys. B, 2017, 26(3): 036101.
[13] Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Xin-Miao Zhang(张鑫淼), Han-Zhang Liu(刘汉璋), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Wen-Bin Su(苏文斌), Liang-Mo Mei(梅良模). Chin. Phys. B, 2017, 26(3): 037101.
[14] First-principles study of strain effect on the formation and electronic structures of oxygen vacancy in SrFeO2
Wei Zhang(张玮), Jie Huang(黄洁). Chin. Phys. B, 2016, 25(5): 057103.
[15] Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments
Han-Lu Ma(马寒露), Zhong-Qiang Wang(王中强), Hai-Yang Xu(徐海阳), Lei Zhang(张磊), Xiao-Ning Zhao(赵晓宁), Man-Shu Han(韩曼舒), Jian-Gang Ma(马剑钢), Yi-Chun Liu(刘益春). Chin. Phys. B, 2016, 25(12): 127303.
No Suggested Reading articles found!