Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040304    DOI: 10.1088/1674-1056/ac2b17
GENERAL Prev   Next  

Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel

Zhihang Xu(许智航)1, Yuzhen Wei(魏玉震)2, Cong Jiang(江聪)1, and Min Jiang(姜敏)1,†
1 School of Electronics&Information Engineering, Soochow University, Suzhou 215006, China;
2 School of Information Engineering, Huzhou University, Huzhou 313000, China
Abstract  We propose a novel scheme for remote state preparation of an arbitrary three-qubit state with unit success probability, utilizing a nine-qubit cluster-GHZ state without introducing auxiliary qubits. Furthermore, we proceed to investigate the effects of different quantum noises (e.g., amplitude-damping, phase-damping, bit-flip and phase-flip noises) on the systems. The fidelity results of three-qubit target state are presented, which are usually used to illustrate how close the output state is to the target state. To compare the different effects between the four common types of quantum noises, the fidelities under one specific identical target state are also calculated and discussed. It is found that the fidelity of the phase-flip noisy channel drops the fastest through the four types of noisy channels, while the fidelity is found to always maintain at 1 in bit-flip noisy channel.
Keywords:  deterministic remote state preparation      arbitrary three-qubit state      cluster state      quantum noises  
Received:  25 July 2021      Revised:  17 September 2021      Accepted manuscript online:  29 September 2021
PACS:  03.67.Hk (Quantum communication)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: This work was supported by the Tang Scholar Project of Soochow University, the National Natural Science Foundation of China (Grant No. 61873162), the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University (Grant No. ICT2021B24), and China Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network and Suzhou Key Laboratory of Advanced Optical Communication Network Technology.
Corresponding Authors:  Min Jiang     E-mail:  jiangmin08@suda.edu.cn

Cite this article: 

Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏) Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel 2022 Chin. Phys. B 31 040304

[1] Bennett C H, Brassard G, C Crepeau et al. 1993 Phys. Rev. Lett. 70 1895
[2] Karlsson A and Bourennane M 2002 Phys. Rev. A 58 4394
[3] Zhang S L, Jin C H, Shi J H et al. 2017 Chin. Phys. Lett. 34 040302
[4] Wang J, Zhang Q, Tang C J 2006 International Conference on Computational Intelligence and Security, November 3-6, 2006, Guangzhou, China, pp. 69-80
[5] Xu P, Bao W S, Li H W et al. 2017 Chin. Phys. Lett. 34 020302
[6] Zhang Z J and Man Z X 2004 Phys. Rev. A 72 022303
[7] Xiao M, Cao Y R and Song X L 2017 Chin. Phys. Lett. 34 030302
[8] Mattle K, Weinfurter H, Kwiat P G et al. 1996 Phys. Rev. Lett. 76 4656
[9] Lo H K 2000 Phys. Rev. A 62 012313
[10] Bennett C H, DiVincenzo D P, Shor P W et al. 2001 Phys. Rev. Lett. 87 077902
[11] Qi B, Pan H and Guo L 2012 IEEE Trans. Autom. Control 58 1349
[12] Dong D, Chen C, Tarn T J et al. 2008 IEEE Trans. Systems, Man, and Cybernetics, Part B (Cybernetics) 38 957
[13] Wang Y, Dong D, Qi B et al. 2017 IEEE Trans. Autom. Control 63 1388
[14] Wu R B and Rabitz H 2012 J. Phys. A:Math. Theor. 45 485303
[15] Xue S B, Tan L Y, Wu R B et al. 2012 Phys. Rev. A 102 042227
[16] Cong S and Yang F 2013 J. Phys. A:Math. Theor. 46 075305
[17] Long G ad Feng G 2019 Quantum Engin. 1 e27
[18] Yang L and Liu Y C 2020 Chin. Phys. B 29 060301
[19] Sheng Y B and Zhou L 2018 Phys. Rev. A 98 052343
[20] Zhang X P, Shen L T, Zhang Y et al. 2021 Sci. China Phys. Mech. Astron. 64 1
[21] Wei J H, Dai H Y and Zhang M 2014 Quantum Inform. Process. 13 2115
[22] Zhang P, Li X, Ma S Y et al. 2017 Commun. Theor. Phys. 67 498
[23] Ma S Y, Gao C, Zhang P et al. 2017 Quantum Inform. Process. 16 1
[24] Nguyen B A and Kim J 2008 J. Phys. B:At. Mol. Opt. Phys. 41 095501
[25] Chen X B, Ma S Y, Su Y et al. 2012 Quantum Inform. Process. 11 1653
[26] Zhang Y W, Yi M L, Xue Q Z et al. 2009 Phys. Rev. Lett. 52 235
[27] Kiess T E, Shih Y H, Sergienko A V et al. 1993 Phys. Rev. Lett. 71 3893
[28] An N B, Cao T B and Don N V 2011 Phys. Lett. A 375 3570
[29] Chen Q Q, Xia Y and Song J 2012 J. Phys. A:Math. Theor. 45 055303
[30] Bich C T, Don N V and An N B 2012 Int. J. Theor. Phys. 51 2272
[31] Resch K J, Walther P and Zeilinger A 2005 Phys. Rev. Lett. 94 070402
[32] Peng J Y, Luo M X and Mo Z W 2013 Quantum Inform. Process. 12 2325
[33] Jia H Y, Wen Q Y, Wu X et al. 2012 Int. J. Theor. Phys. 51 2086
[34] Wang M M, Chen X B and Yang Y X 2013 Commun. Theor. Phys. 59 568
[35] Ding M, Jiang M, Huang X and Liu Y 2016 35th Chinese Control Conference (CCC), July 27-29, 2016, Chengdu, China, pp. 9105-9108
[36] Zha X W, Wang M R and Jiang R X 2020 Chin. Phys. B 29 040304
[37] Zhan Y B, Hao F, Li X W et al. 2013 Int. J. Theor. Phys. 52 2615
[38] Hou K, Yu J Y and Yan F 1993 Int. J. Theor. Phys. 54 3092
[39] Wei J, Shi L, Zhu Y et al. 2018 Quantum Inform. Process. 17 70
[40] Zha X W, Wang M R and Jiang R X 2020 Int. J. Theor. Phys. 59 960
[41] Qian Y, Xue S and Jiang M 2020 Phys. Lett. A 384 126204
[42] Zhang P, Ma S and Gong L 2019 Int. J. Theor. Phys. 58 2795
[43] Dash T, Sk R and Panigrahi P K 2020 Opt. Commun. 464 125518
[44] Falaye B J, Sun G H, Camacho-Nieto O et al. 2016 Int. J. Quantum Inform. 14 1650034
[45] Le S, Wu S, Qu Z et al. 2018 Quantum Inform. Process. 17 283
[46] Wang D, Zha X W, Qi J X and He Y 2012 Acta Photon. Sin. 41 335 (in Chinese)
[47] Zhan Y B and Ma P C 2013 Quantum Inform. Process. 12 997
[1] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[2] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[3] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
[4] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[5] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[6] Electronic cluster state entanglement concentration based on charge detection
Liu Jiong (刘炯), Zhao Sheng-Yang (赵圣阳), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波). Chin. Phys. B, 2014, 23(2): 020313.
[7] Efficient generation of two-dimensional cluster states in cavity QED
Zhang Gang (张刚), Zhou Jian (周建), Xue Zheng-Yuan (薛正远). Chin. Phys. B, 2013, 22(4): 040307.
[8] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[9] Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity
Su Shi-Lei(苏石磊), Wang Yuan(王媛), Guo Qi(郭奇), Wang Hong-Fu(王洪福), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(4): 044205.
[10] Controlled quantum state sharing of arbitrary two-qubit states with five-qubit cluster states
Wang Dong(王东), Zha Xin-Wei(查新未), Lan Qian(兰倩), Li Ning(李宁), and Wei Jing(卫静) . Chin. Phys. B, 2011, 20(9): 090305.
[11] Preparation of cluster states with trapped electrons on a liquid helium surface
Ai Ling-Yan(艾凌艳), Shi Yan-Li(石艳丽), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2011, 20(10): 100303.
[12] Large-scale cluster state generation with nuclear spins in diamonds
Chen Qiong(陈琼), Feng Mang(冯芒), Du Jiang-Feng(杜江峰), and Hai Wen-Hua(海文华) . Chin. Phys. B, 2011, 20(1): 010308.
[13] Fast generation of cluster states in a linear ion trap
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Zhang Xiao-Long(张小龙), and Feng Mang(冯芒). Chin. Phys. B, 2010, 19(9): 090317.
[14] Generation of entangled coherent states through cavity-assisted interaction
Chen Xiao-Dong(陈晓东), Gu Yong-Jian(顾永建), Liang Hong-Hui(梁鸿辉), Ni Bin-Bin(倪彬彬), and Lin Xiu-Min(林秀敏) . Chin. Phys. B, 2010, 19(4): 040310.
[15] Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system
Zheng Xiao-Juan (郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成). Chin. Phys. B, 2010, 19(3): 034207.
No Suggested Reading articles found!