Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054211    DOI: 10.1088/1674-1056/ac272c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber

Ying Huang(黄颖)1, Hua Yang(杨华)1,2,†, and Yucheng Mao(毛雨澄)1
1 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China;
2 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  A circular photonic crystal fiber (C-PCF) based on As2Se3 is designed, which has three zero dispersion wavelengths and flat dispersion. Using this fiber, a wide mid-infrared supercontinuum (MIR-SC) can be generated by launching a femtosecond pulse in the first anomalous dispersion region. The simulation results show that the MIR-SC is formed by soliton self-frequency shift and direct soliton spectrum tunneling on the long wavelength side and self-phase modulation, soliton fission on the short wavelength side. Further, optical shocking and four-wave mixing (FWM) are not conducive to the long-wavelength extension of MIR-SC, while the number and intensity of fundamental solitons have a greater effect on the short-wavelength extension of MIR-SC. The generation of optical shocking waves, FWM waves and fundamental solitons can be obviously affected by changing the fiber length and input pulse parameters, so that the spectrum range and flatness can be adjusted with great freedom. Finally, under the conditions of 4000 W pulse peak power, 30 fs pulse width, 47 mm fiber length, and 0 initial chirp, a wide MIR-SC with a coverage range of 2.535 μm-16.6 μm is obtained. These numerical results are encouraging because they demonstrate that the spread of MIR-SC towards the red and blue ends can be manipulated by choosing the appropriate incident pulse and designing optimized fiber parameters, which contributes to applications in such diverse areas as spectroscopy, metrology and tomography.
Keywords:  circular photonic crystal fiber      chalcogenide glass      direct soliton spectrum tunneling      nonlinearity  
Received:  10 June 2021      Revised:  08 September 2021      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.81.-i (Fiber optics)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61275137) and the Opened Fund of the State Key Laboratory of Integrated Optoelectronics (Grant 054211-8 Chin.Phys.B 31,054211(2022) No.IOSKL2020KF20).
Corresponding Authors:  Hua Yang,E-mail:huayang@hnu.edu.cn     E-mail:  huayang@hnu.edu.cn
About author:  2021-9-16

Cite this article: 

Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄) Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber 2022 Chin. Phys. B 31 054211

[1] Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135
[2] Falk P, Frosz M and Bang O 2005 Opt. Express 13 7535
[3] Zhao S, Yang H, Chen N, Fu X and Zhao C 2015 IEEE Photonics Journal 7 7102709
[4] Wei C, Zhu X, Norwood R A, Seng F and Peyghambarian N 2013 Opt. Express 21 29488
[5] Hu J, Menyuk C R, Shaw L B, Sanghera J S and Aggarwal I D 2010 Opt. Express 18 6722
[6] Dupont S, Petersen C, Thogersen J, Agger C, Bang O and Keiding S R 2012 Opt. Express 20 4887
[7] Swiderski J and Michalska M 2014 Opt. Lett. 39 910
[8] Price J H V, Monro T M, Ebendorff-Heidepriem H, Poletti F, Horak P, Finazzi V, Leong J Y Y, Petropoulos P, Flanagan J C, Brambilla G, Feng X and Richardson D J 2007 IEEE Journal of Selected Topics in Quantum Electronics 13 738
[9] Petersen C R, M?ller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A and Bang O 2014 Nat. Photon. 8 830
[10] Kubat I, Petersen C R, Moller U V, Seddon A, Benson T, Brilland L, Méchin D, Moselund P M and Bang O 2014 Opt. Express 22 3959
[11] Eggleton B, Luther-Davies B and Richardson K 2011 Nat. Photon. 5 141
[12] Tao G, Ebendorff-Heidepriem H, Stolyarov A, Danto S, Badding J, Fink Y, Ballato J and Abouraddy A 2015 Advances in Optics & Photonics 7 379
[13] Zhang P, Yang P, Wang X, Wang R, Dai S and Nie Q 2016 Opt. Express 24 28400
[14] Arnaud M, Maxime B, Mohamed B and Thibaut S 2007 Opt. Express 15 11553
[15] Wang S, Hu J, Guo H and Zeng X 2013 Opt. Express 21 3067
[16] Maji P S and Chaudhuri P R 2015 Appl. Opt. 54 4042
[17] Sun Y, Dai S, Zhang P, Wang X, Xu Y, Liu Z, Chen F, Wu Y, Zhang Y, Wang R and Tao G 2015 Opt. Express 23 23472
[18] Kubat I, Petersen C R, Møller U V, Seddon A, Benson T, Brilland L, Méchin D, Moselund P M and Bang O 2014 Opt. Express 22 19169
[19] Saini T S, Kumar A and Sinha R K 2015 Journal of Lightwave Technology 33 3914
[20] Frosz M H, Falk P and Bang O 2005 Opt. Express 13 6181
[21] Mei C and Steinmeyer G 2020 J. Opt. Soc. Am. B 37 2485
[22] Liu E X, Tan W, Yan B, Xie J L, Ge R and Liu J J 2018 J. Opt. Soc. Am. A 35 431
[23] Amoah A K, Akowuah E K, Nukpezah G, Haxha S and Ademgilc H 2019 Optical Fiber Technology 53 102032
[24] Ahmad R, Komanec M and Zvanovec S 2016 IEEE Photonics Technology Letters 28 2736
[25] Medjouri A, Simohamed L M, Ziane O, Boudrioua A and Becer Z 2015 Photonics and Nanostructures-Fundamentals and Applications 16 43
[26] Medjouri A and Abed D 2019 Phys. Rev. Opt. Mater. 97 109391
[27] Zhao S, Yang H, Zhao C and Xiao Y 2017 Opt. Express 25 7192
[28] Driben R and Zhavoronkov N 2010 Opt. Express 18 16733
[29] Klimczak M, Siwicki B, Skibiński P, Pysz D, Stȩpień R, Heidt A, Radzewicz C and Buczyński R 2014 Opt. Express 22 18824
[30] Tian L, Wei L and Ying F 2015 Opt. Commun. 334 196
[31] Luo Y, Yang H, Zhao S, Lv J and Hu H 2020 Opt. Commun. 454 124330
[32] Huang Y, Yang H, Zhao S, Mao Y and Chen S 2021 Results in Physics 23 104033
[1] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[2] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[3] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[4] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[5] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[6] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[7] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
[8] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[9] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[10] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[11] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[12] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
Wei Wang(王伟), Jun-en Yao(姚骏恩). Chin. Phys. B, 2018, 27(9): 098503.
[13] Research progress of third-order optical nonlinearity of chalcogenide glasses
Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟). Chin. Phys. B, 2018, 27(8): 084208.
[14] Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses
Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇). Chin. Phys. B, 2018, 27(7): 077105.
[15] Variable angle spectroscopic ellipsometry and its applications in determining optical constants of chalcogenide glasses in infrared
Ning-Ning Wei(韦宁宁), Zhen Yang(杨振), Hong-Bo Pan(潘宏波), Fan Zhang(张凡), Yong-Xing Liu(刘永兴), Rong-Ping Wang(王荣平), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), Qiu-Hua Nie(聂秋华). Chin. Phys. B, 2018, 27(6): 067802.
No Suggested Reading articles found!