Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 118104    DOI: 10.1088/1674-1056/ac248d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Suppression of ion migration in perovskite materials by pulse-voltage method

Xue-Yan Wang(王雪岩)1,2,3,†, Hu Wang(王虎)2,3,5,†, Luo-Ran Chen(陈烙然)2,3,5, Yu-Chuan Shao(邵宇川)2,3,4,5,‡, and Jian-Da Shao(邵建达)1,2,3,4,5,§
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
2 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
3 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
4 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Hybrid halide perovskites have great potential for applications in optoelectronic devices. However, the typical ion migration in perovskite could lead to the non-repeatability of electrical measurement, instability of material, and degradation of device performance. The basic current-voltage behavior of perovskite materials is intricate due to the mixed electronic-ionic characteristic, which is still poorly understood in these semiconductors. Developing novel measurement schematic is a promising solution to obtain the intrinsic electrical performance without the interference of ion migration. Herein, we explore the pulse-voltage (PV) method on methylammonium lead tribromide single crystals to protect the device from the ion migration. A guideline is summarized through the analysis of measurement history and condition parameters. The influence of the ion migration on current-voltage measurement, such as repeatability and hysteresis loop, is under controlled. An application of the PV method is demonstrated on the activation energy of conductivity. The abruption of activation energy still exists near the phase transition temperature despite the ion migration is excluded by the PV method, introducing new physical insight on the current-voltage behavior of perovskite materials. The guideline on PV method will be beneficial for measuring halide perovskite materials and developing optoelectronic applications with new technique schematic.
Keywords:  perovskites      ion migration      electrical properties      temperature-dependent resistivity  
Received:  30 July 2021      Revised:  03 September 2021      Accepted manuscript online:  08 September 2021
PACS:  81.70.-q (Methods of materials testing and analysis)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  81.05.Fb (Organic semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61805263) and Shanghai Sailing Program, China (Grant No. 18YF1426400).
Corresponding Authors:  Yu-Chuan Shao, Jian-Da Shao     E-mail:  shaoyuchuan@siom.ac.cn;jdshao@siom.ac.cn

Cite this article: 

Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达) Suppression of ion migration in perovskite materials by pulse-voltage method 2021 Chin. Phys. B 30 118104

[1] Jena A K, Kulkarni A and Miyasaka T 2019 Chem. Rev. 119 3036
[2] Park N G 2015 Mater. Today 18 65
[3] Igbari F, Wang Z K and Liao L S 2019 Adv. Energy Mater. 9 1803150
[4] Wei H T and Huang J S 2019 Nat. Commun. 10 1066
[5] Cao Z L, Hu F R, Man Z Q, Zhang C F, Zhang W H, Wang X Y and Xiao M 2020 Chin. Phys. Lett. 37 127801
[6] Li Y, Shi Z F, Li X and Shan C X 2019 Chin. Phys. B 28 17803
[7] Zhao Y, Li C L and Shen L 2018 Chin. Phys. B 27 127806
[8] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[9] Xiao Z G, Yuan Y B, Shao Y C, Wang Q, Dong Q F, Bi C, Sharma P, Gruverman A and Huang J S 2015 Nat. Mater. 14 193
[10] Eames C, Frost J M, Barnes P R F, O'Regan B C, Walsh A and Islam M S 2015 Nat. Commun. 6 7497
[11] Zhang T, Hu C and Yang S H 2020 Small Methods 4 1900552
[12] Xiao X, Dai J, Fang Y J, Zhao J J, Zheng X P, Tang S, Rudd P N, Zeng X C and Huang J S 2018 ACS Energy Lett. 3 684
[13] Frost J M and Walsh A 2016 Acc. Chem. Res. 49 528
[14] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Grätzel M 2017 Science 358 768
[15] Cho H, Kim Y H, Wolf C, Lee H D and Lee T W 2018 Adv. Mater. 30 1704587
[16] Chen B, Rudd P N, Yang S, Yuan Y B and Huang J S 2019 Chem. Soc. Rev. 48 3842
[17] Lin Y, Bai Y, Fang Y J, Wang Q, Deng Y H and Huang J S 2017 ACS Energy Lett. 2 1571
[18] Xiao X, Dai J, Fang Y J, Zhao J J, Zheng X P, Tang S, Rudd P N, Zeng X C and Huang J S 2018 ACS Energy Lett. 3 684
[19] Yang F, Zuo W W, Liu H, Song J, Liu H R, Li J M and Jain S M 2019 Org. Electron. 75 105387
[20] Wang Y, Tian Y, Luo Y X, Yang J M, Cheng L P, Wu H Y, Tang J X and Li Y Q 2020 Org. Electron. 86 105919
[21] Cho J, DuBose J T, Le A N T and Kamat P V 2020 ACS Mater. Lett. 2 565
[22] Shao Y C, Fang Y J, Li T, Wang Q, Dong Q F, Deng Y H, Yuan Y B, Wei H T, Wang M Y, Gruverman A, Shield J and Huang J S 2016 Energy Environ. Sci. 9 1752
[23] Musiienko A, Moravec P, Grill R, Praus P, Vasylchenko I, Pekarek J, Tisdale J, Ridzonova K, Belas E, Landová L, Hu B, Lukosi E and Ahmadi M 2019 Energy Environ. Sci. 12 1413
[24] Lampert M A 1956 Phys. Rev. 103 1648
[25] Sawa A 2008 Mater. Today 11 28
[26] Xiao Z G and Huang J 2016 Adv. Electron. Mater. 2 1600100
[27] Le Corre V M, Duijnstee E A, El Tambouli O, Ball J M, Snaith H J, Lim J and Koster L J A 2021 ACS Energy Lett. 6 1087
[28] Saidaminov M I, Abdelhady A L, Murali B, Alarousu E, Burlakov V M, Peng W, Dursun I, Wang L F, He Y, Maculan G, Goriely A, Wu T, Mohammed O F and Bakr O M 2015 Nat. Commun. 6 7586
[29] Yuan Y B, Chae J, Shao Y C, Wang Q, Xiao Z G, Centrone A and Huang J S 2015 Adv. Energy Mater. 5 1500615
[30] Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kießling J, Köhler A, Vaynzof Y and Huettner S 2016 Adv. Mater. 28 2446
[31] Lv F Z, Zhong T T, Qin Y F, Qin H J, Wang W F, Liu F C and Kong W J 2021 Nanomaterials 11 1361
[32] Sajedi Alvar M, Blom P W M and Wetzelaer G J A H 2020 Nat. Commun. 11 4023
[33] Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K and Grätzel M 2015 Energy Environ. Sci. 8 995
[34] Xing J, Wang Q, Dong Q F, Yuan Y B, Fang Y J and Huang J S 2016 Phys. Chem. Chem. Phys. 18 30484
[35] Li C, Guerrero A, Zhong Y, Gräser A, Luna C A M, Köhler J, Bisquert J, Hildner R and Huettner S 2017 Small 13 1701711
[36] Cao X B, Li Y H, Li C, Fang F, Yao Y W, Cui X and Wei J Q 2016 J. Phys. Chem. C 120 22784
[37] Lan C, Zou H, Wang L, Zhang M, Pan S, Ma Y, Qiu Y, Wang Z L and Lin Z 2020 Adv. Mater. 32 2005481
[38] Duijnstee E A, Ball J M, Le Corre V M, Koster L J A, Snaith H J and Lim J 2020 ACS Energy Lett. 5 376
[39] Yuan Y B, Wang Q, Shao Y C, Lu H D, Li T, Gruverman A and Huang J S 2016 Adv. Energy Mater. 6 1501803
[40] Fang H H, Adjokatse S, Wei H T, Yang J, Blake G R, Huang J S, Even J and Loi M A 2016 Sci. Adv. 2 e1600534
[41] Wei H T, Fang Y J, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L and Huang J S 2016 Nat. Photon. 10 333
[42] Pan W C, Wu H D, Luo J J, Deng Z Z, Ge C, Chen C, Jiang X W, Yin WJ, Niu G D, Zhu L J, Yin L X, Zhou Y, Xie Q, Ke X X, Sui M L and Tang J 2017 Nat. Photon. 11 726
[43] Yang T Y, Gregori G, Pellet N, Grätzel M and Maier J 2015 Angew. Chemie Int. Ed. 54 7905
[44] Huang Q, Lynn J, Erwin R, Santoro A, Dender D, Smolyaninova V, Ghosh K and Greene R 2000 Phys. Rev. B 61 8895
[45] Ni N, Nandi S, Kreyssig A, Goldman A I, Mun E D, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 014523
[46] Kuwahara H, Tomioka Y, Moritomo Y, Asamitsu A, Kasai M, Kumai R and Tokura Y 1996 Science 272 80
[47] Wang K H, Li L C, Shellaiah M and Sun K W 2017 Sci. Rep. 7 1
[48] Bari M, Bokov A A and Ye Z G 2021 J. Mater. Chem. C 9 3096
[49] Liu Y C, Zhang Y X, Yang Z, Cui J, Wu H D, Ren X D, Zhao K, Feng J S, Tang J, Xu Z and Liu S Z Frank 2020 Adv. Opt. Mater. 8 2000814
[50] Duijnstee E A, Le Corre V M, Johnston M B, Koster L J A, Lim J and Snaith H J 2021 Phys. Rev. Appl. 15 014006
[51] Mahapatra A, Parikh N, Kumari H, Pandey M K, Kumar M, Prochowicz D, Kalam A, Tavakoli M M and Yadav P 2020 J. Appl. Phys. 127 185501
[1] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[2] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[3] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[4] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[5] Electrical properties of m×n cylindrical network
Zhi-Zhong Tan(谭志中), Zhen Tan(谭震). Chin. Phys. B, 2020, 29(8): 080503.
[6] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[7] A simple rule for finding Dirac cones in bilayered perovskites
Xuejiao Chen(陈雪娇), Lei Liu(刘雷), Dezhen Shen(申德振). Chin. Phys. B, 2019, 28(7): 077106.
[8] Photodetectors based on inorganic halide perovskites: Materials and devices
Ying Li(李营), Zhi-Feng Shi(史志锋), Xin-Jian Li(李新建), Chong-Xin Shan(单崇新). Chin. Phys. B, 2019, 28(1): 017803.
[9] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
[10] Fabrication of mixed perovskite organic cation thin films via controllable cation exchange
Yu-Long Zhao(赵宇龙), Jin-Feng Wang(王进峰), Ben-Guang Zhao(赵本广), Chen-Chen Jia(贾晨晨), Jun-Peng Mou(牟俊朋), Lei Zhu(朱磊), Jian Song(宋健), Xiu-Quan Gu(顾修全), Ying-Huai Qiang(强颖怀). Chin. Phys. B, 2018, 27(2): 024208.
[11] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[12] First-principles investigations on the mechanical, thermal,electronic, and optical properties of the defect perovskites Cs2SnX6 (X= Cl, Br, I)
Hai-Ming Huang(黄海铭), Zhen-Yi Jiang(姜振益), Shi-Jun Luo(罗时军). Chin. Phys. B, 2017, 26(9): 096301.
[13] Degradation behavior of electrical properties of GaInAs (1.0 eV) and GaInAs (0.7 eV) sub-cells of IMM4J solar cells under 1-MeV electron irradiation
Yan-Qing Zhang(张延清), Ming-Xue Huo(霍明学), Yi-Yong Wu(吴宜勇), Cheng-Yue Sun(孙承月), Hui-Jie Zhao(赵慧杰), Hong-Bin Geng(耿洪滨), Shuai Wang(王帅), Ru-Bin Liu(刘如彬), Qiang Sun(孙强). Chin. Phys. B, 2017, 26(8): 088801.
[14] First principles investigation of protactinium-based oxide-perovskites for flexible opto—electronic devices
Nazia Erum, Muhammad Azhar Iqbal. Chin. Phys. B, 2017, 26(4): 047102.
[15] High pressure electrical transport behavior in SrF2 nanoplates
Xiao-Yan Cui(崔晓岩), Ting-Jing Hu(胡廷静), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2017, 26(4): 046401.
No Suggested Reading articles found!