Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 118104    DOI: 10.1088/1674-1056/ac248d

Suppression of ion migration in perovskite materials by pulse-voltage method

Xue-Yan Wang(王雪岩)1,2,3,†, Hu Wang(王虎)2,3,5,†, Luo-Ran Chen(陈烙然)2,3,5, Yu-Chuan Shao(邵宇川)2,3,4,5,‡, and Jian-Da Shao(邵建达)1,2,3,4,5,§
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
2 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
3 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
4 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Hybrid halide perovskites have great potential for applications in optoelectronic devices. However, the typical ion migration in perovskite could lead to the non-repeatability of electrical measurement, instability of material, and degradation of device performance. The basic current-voltage behavior of perovskite materials is intricate due to the mixed electronic-ionic characteristic, which is still poorly understood in these semiconductors. Developing novel measurement schematic is a promising solution to obtain the intrinsic electrical performance without the interference of ion migration. Herein, we explore the pulse-voltage (PV) method on methylammonium lead tribromide single crystals to protect the device from the ion migration. A guideline is summarized through the analysis of measurement history and condition parameters. The influence of the ion migration on current-voltage measurement, such as repeatability and hysteresis loop, is under controlled. An application of the PV method is demonstrated on the activation energy of conductivity. The abruption of activation energy still exists near the phase transition temperature despite the ion migration is excluded by the PV method, introducing new physical insight on the current-voltage behavior of perovskite materials. The guideline on PV method will be beneficial for measuring halide perovskite materials and developing optoelectronic applications with new technique schematic.
Keywords:  perovskites      ion migration      electrical properties      temperature-dependent resistivity  
Received:  30 July 2021      Revised:  03 September 2021      Accepted manuscript online:  08 September 2021
PACS:  81.70.-q (Methods of materials testing and analysis)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  81.05.Fb (Organic semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61805263) and Shanghai Sailing Program, China (Grant No. 18YF1426400).
Corresponding Authors:  Yu-Chuan Shao, Jian-Da Shao     E-mail:;

Cite this article: 

Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达) Suppression of ion migration in perovskite materials by pulse-voltage method 2021 Chin. Phys. B 30 118104

[1] Jena A K, Kulkarni A and Miyasaka T 2019 Chem. Rev. 119 3036
[2] Park N G 2015 Mater. Today 18 65
[3] Igbari F, Wang Z K and Liao L S 2019 Adv. Energy Mater. 9 1803150
[4] Wei H T and Huang J S 2019 Nat. Commun. 10 1066
[5] Cao Z L, Hu F R, Man Z Q, Zhang C F, Zhang W H, Wang X Y and Xiao M 2020 Chin. Phys. Lett. 37 127801
[6] Li Y, Shi Z F, Li X and Shan C X 2019 Chin. Phys. B 28 17803
[7] Zhao Y, Li C L and Shen L 2018 Chin. Phys. B 27 127806
[8] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[9] Xiao Z G, Yuan Y B, Shao Y C, Wang Q, Dong Q F, Bi C, Sharma P, Gruverman A and Huang J S 2015 Nat. Mater. 14 193
[10] Eames C, Frost J M, Barnes P R F, O'Regan B C, Walsh A and Islam M S 2015 Nat. Commun. 6 7497
[11] Zhang T, Hu C and Yang S H 2020 Small Methods 4 1900552
[12] Xiao X, Dai J, Fang Y J, Zhao J J, Zheng X P, Tang S, Rudd P N, Zeng X C and Huang J S 2018 ACS Energy Lett. 3 684
[13] Frost J M and Walsh A 2016 Acc. Chem. Res. 49 528
[14] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Grätzel M 2017 Science 358 768
[15] Cho H, Kim Y H, Wolf C, Lee H D and Lee T W 2018 Adv. Mater. 30 1704587
[16] Chen B, Rudd P N, Yang S, Yuan Y B and Huang J S 2019 Chem. Soc. Rev. 48 3842
[17] Lin Y, Bai Y, Fang Y J, Wang Q, Deng Y H and Huang J S 2017 ACS Energy Lett. 2 1571
[18] Xiao X, Dai J, Fang Y J, Zhao J J, Zheng X P, Tang S, Rudd P N, Zeng X C and Huang J S 2018 ACS Energy Lett. 3 684
[19] Yang F, Zuo W W, Liu H, Song J, Liu H R, Li J M and Jain S M 2019 Org. Electron. 75 105387
[20] Wang Y, Tian Y, Luo Y X, Yang J M, Cheng L P, Wu H Y, Tang J X and Li Y Q 2020 Org. Electron. 86 105919
[21] Cho J, DuBose J T, Le A N T and Kamat P V 2020 ACS Mater. Lett. 2 565
[22] Shao Y C, Fang Y J, Li T, Wang Q, Dong Q F, Deng Y H, Yuan Y B, Wei H T, Wang M Y, Gruverman A, Shield J and Huang J S 2016 Energy Environ. Sci. 9 1752
[23] Musiienko A, Moravec P, Grill R, Praus P, Vasylchenko I, Pekarek J, Tisdale J, Ridzonova K, Belas E, Landová L, Hu B, Lukosi E and Ahmadi M 2019 Energy Environ. Sci. 12 1413
[24] Lampert M A 1956 Phys. Rev. 103 1648
[25] Sawa A 2008 Mater. Today 11 28
[26] Xiao Z G and Huang J 2016 Adv. Electron. Mater. 2 1600100
[27] Le Corre V M, Duijnstee E A, El Tambouli O, Ball J M, Snaith H J, Lim J and Koster L J A 2021 ACS Energy Lett. 6 1087
[28] Saidaminov M I, Abdelhady A L, Murali B, Alarousu E, Burlakov V M, Peng W, Dursun I, Wang L F, He Y, Maculan G, Goriely A, Wu T, Mohammed O F and Bakr O M 2015 Nat. Commun. 6 7586
[29] Yuan Y B, Chae J, Shao Y C, Wang Q, Xiao Z G, Centrone A and Huang J S 2015 Adv. Energy Mater. 5 1500615
[30] Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kießling J, Köhler A, Vaynzof Y and Huettner S 2016 Adv. Mater. 28 2446
[31] Lv F Z, Zhong T T, Qin Y F, Qin H J, Wang W F, Liu F C and Kong W J 2021 Nanomaterials 11 1361
[32] Sajedi Alvar M, Blom P W M and Wetzelaer G J A H 2020 Nat. Commun. 11 4023
[33] Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K and Grätzel M 2015 Energy Environ. Sci. 8 995
[34] Xing J, Wang Q, Dong Q F, Yuan Y B, Fang Y J and Huang J S 2016 Phys. Chem. Chem. Phys. 18 30484
[35] Li C, Guerrero A, Zhong Y, Gräser A, Luna C A M, Köhler J, Bisquert J, Hildner R and Huettner S 2017 Small 13 1701711
[36] Cao X B, Li Y H, Li C, Fang F, Yao Y W, Cui X and Wei J Q 2016 J. Phys. Chem. C 120 22784
[37] Lan C, Zou H, Wang L, Zhang M, Pan S, Ma Y, Qiu Y, Wang Z L and Lin Z 2020 Adv. Mater. 32 2005481
[38] Duijnstee E A, Ball J M, Le Corre V M, Koster L J A, Snaith H J and Lim J 2020 ACS Energy Lett. 5 376
[39] Yuan Y B, Wang Q, Shao Y C, Lu H D, Li T, Gruverman A and Huang J S 2016 Adv. Energy Mater. 6 1501803
[40] Fang H H, Adjokatse S, Wei H T, Yang J, Blake G R, Huang J S, Even J and Loi M A 2016 Sci. Adv. 2 e1600534
[41] Wei H T, Fang Y J, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L and Huang J S 2016 Nat. Photon. 10 333
[42] Pan W C, Wu H D, Luo J J, Deng Z Z, Ge C, Chen C, Jiang X W, Yin WJ, Niu G D, Zhu L J, Yin L X, Zhou Y, Xie Q, Ke X X, Sui M L and Tang J 2017 Nat. Photon. 11 726
[43] Yang T Y, Gregori G, Pellet N, Grätzel M and Maier J 2015 Angew. Chemie Int. Ed. 54 7905
[44] Huang Q, Lynn J, Erwin R, Santoro A, Dender D, Smolyaninova V, Ghosh K and Greene R 2000 Phys. Rev. B 61 8895
[45] Ni N, Nandi S, Kreyssig A, Goldman A I, Mun E D, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 014523
[46] Kuwahara H, Tomioka Y, Moritomo Y, Asamitsu A, Kasai M, Kumai R and Tokura Y 1996 Science 272 80
[47] Wang K H, Li L C, Shellaiah M and Sun K W 2017 Sci. Rep. 7 1
[48] Bari M, Bokov A A and Ye Z G 2021 J. Mater. Chem. C 9 3096
[49] Liu Y C, Zhang Y X, Yang Z, Cui J, Wu H D, Ren X D, Zhao K, Feng J S, Tang J, Xu Z and Liu S Z Frank 2020 Adv. Opt. Mater. 8 2000814
[50] Duijnstee E A, Le Corre V M, Johnston M B, Koster L J A, Lim J and Snaith H J 2021 Phys. Rev. Appl. 15 014006
[51] Mahapatra A, Parikh N, Kumari H, Pandey M K, Kumar M, Prochowicz D, Kalam A, Tavakoli M M and Yadav P 2020 J. Appl. Phys. 127 185501
[1] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[2] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[3] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[4] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[5] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[6] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[7] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[8] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[9] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[10] Electrical properties of m×n cylindrical network
Zhi-Zhong Tan(谭志中), Zhen Tan(谭震). Chin. Phys. B, 2020, 29(8): 080503.
[11] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[12] A simple rule for finding Dirac cones in bilayered perovskites
Xuejiao Chen(陈雪娇), Lei Liu(刘雷), Dezhen Shen(申德振). Chin. Phys. B, 2019, 28(7): 077106.
[13] Photodetectors based on inorganic halide perovskites: Materials and devices
Ying Li(李营), Zhi-Feng Shi(史志锋), Xin-Jian Li(李新建), Chong-Xin Shan(单崇新). Chin. Phys. B, 2019, 28(1): 017803.
[14] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
[15] Fabrication of mixed perovskite organic cation thin films via controllable cation exchange
Yu-Long Zhao(赵宇龙), Jin-Feng Wang(王进峰), Ben-Guang Zhao(赵本广), Chen-Chen Jia(贾晨晨), Jun-Peng Mou(牟俊朋), Lei Zhu(朱磊), Jian Song(宋健), Xiu-Quan Gu(顾修全), Ying-Huai Qiang(强颖怀). Chin. Phys. B, 2018, 27(2): 024208.
No Suggested Reading articles found!