Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100312    DOI: 10.1088/1674-1056/ac20cb

Widely tunable single-photon source with high spectral-purity from telecom wavelength to mid-infrared wavelength based on MgO:PPLN

Chang-Wei Sun(孙昌伟)1, Yu Sun(孙宇)1, Jia-Chen Duan(端家晨)1, Guang-Tai Xue(薛广太)1, Yi-Chen Liu(刘奕辰)1, Liang-Liang Lu(陆亮亮)1,2, Qun-Yong Zhang(张群永)3, Yan-Xiao Gong(龚彦晓)1, Ping Xu(徐平)1,†, and Shi-Ning Zhu(祝世宁)1
1 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China;
2 Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China;
3 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China
Abstract  By utilizing the extended phase-matching (EPM) method, we investigate the generation of single photons with high spectral-purity in a magnesium-doped periodically-poled lithium niobate (MgO:PPLN) crystal via the spontaneous parametric down-conversion (SPDC) process. By adjusting the temperature and pump wavelength, the wavelength of the single photons can be tuned from telecom to mid-infrared (MIR) wavelengths, for which the spectral-purity can be above 0.95 with high transmission filters. In experiments, we engineer a MgO:PPLN with poling period of 20.35 μ which emits the EPM photon pair centered at 1496.6 nm and 1644.0 nm and carry out the joint spectral intensity (JSI) and Glauber's second-order self-correlation measurements to characterize the spectral purity. The results are in good agreement with the numerical simulations. Our work may provide a valuable approach for the generation of spectrally pure single photons at a wide range of wavelengths which is competent for various photonic quantum technologies.
Keywords:  single photons      quantum technologies      periodically-poled lithium niobate  
Received:  10 August 2021      Revised:  18 August 2021      Accepted manuscript online:  25 August 2021
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2017YFA0303700 and 2019YFA0308700) and the National Natural Science Foundation of China (Grant Nos. 11627810 and 11690031).
Corresponding Authors:  Ping Xu     E-mail:

Cite this article: 

Chang-Wei Sun(孙昌伟), Yu Sun(孙宇), Jia-Chen Duan(端家晨), Guang-Tai Xue(薛广太), Yi-Chen Liu(刘奕辰), Liang-Liang Lu(陆亮亮), Qun-Yong Zhang(张群永), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁) Widely tunable single-photon source with high spectral-purity from telecom wavelength to mid-infrared wavelength based on MgO:PPLN 2021 Chin. Phys. B 30 100312

[1] Daniel G and Isaac L C 1999 Nature 402 390
[2] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[3] Alberto P, Jonathan C F M and Jeremy L O B 2009 Science 325 1221
[4] Jacob M, Nicholas C H, Gregory R S, Yoav L and Dirk E 2015 Phys. Rev. A 92 032322
[5] Matthew A B, Alessandro F, Saleh R K, Justin D, Scott A, Timothy C R and Andrew G W 2013 Science 339 794
[6] Andrea C, Roberto O, Roberta R, Daniel J B, Ernesto F G, Nicolò S, Chiara V, Enrico M, Paolo Mataloni and Fabio S 2013 Nat. Photon. 7 545
[7] Max T, Borivoje D, René H, Stefan N, Alexander S and Philip W 2013 Nat. Photon. 7 540
[8] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460
[9] Nicolas S, Christoph S, Hugues R and Nicolas G 2011 Rev. Mod. Phys. 83 33
[10] Koji A, Kiyoshi T and Hoi K L 2015 Nat. Commun. 6 6787
[11] Temporao G, Zbinden H, Tanzilli Jean S, Gisin N, Aellen T, Giovannini M E, Faist J and Von Der Weid J P 2008 Quantum Inf. Comput. 8 1
[12] Fernandez D C, Bhargava R, Hewitt S M and Levin I W 2005 Nat. Biotechnol. 23 469
[13] Amrania H, Antonacci G, Chan C H, Drummond L, Otto W R, Wright N A and Phillips C 2012 Opt. Express 20 7290
[14] Raghi S E, Diaa K and Mohamed A S 2020 Sci. Rep. 10 1293
[15] Høgstedt L, Dam J S, Sahlberg A L, Li Z S, Aldén M, Pedersen C and Lichtenberg P T 2014 Opt. Lett. 39 5321
[16] Lee K J, Lee S and Shin H 2016 Appl. Opt. 55 9791
[17] Bellei F, Cartwright A P, McCaughan A N, Dane A E, Najafi F, Zhao Q Y and Berggren K K 2016 Opt. Express 24 3248
[18] Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S and Shapiro J H 2008 Phys. Rev. Lett. 101 253601
[19] Wang Q, Hao L, Zhang Y, Xu L, Yang C, Yang X and Zhao Y 2016 Opt. Express 24 5045
[20] Liu Y W, Wu C, Gu X W, Kong Y C, Yu X X, Ge R Y, Cai X L, Qiang X G, Wu J J, Yang X J and Xu P 2020 Opt. Lett. 45 73
[21] Zhu P Y, Liu Y W, Wu C, Xue S C, Yu X Y, Zheng Q L, Wang Y, Qiang X G, Wu J J and Xu P 2020 Chin. Phys. B 29 114201
[22] Chen C C, Bo C, Niu M Y, Xu F H, Zhang Z S, Jeffrey H S and Franco N C W 2020 Opt. Express 25 7300
[23] Jin R B, Ryosuke S, Kentaro W, Hugo B and Masahide S 2013 Opt. Express 21 10659
[24] Kaneda F, Palmett K G, U'Ren A B and Kwiat P G 2016 Opt. Express 24 10733
[25] Liu Y C, Guo D J, Ren K Q, Yang R, Shang M H, Zhou W, Li X H, Sun C W, Xu P, Xie Z D, Gon Y X and Zhu S N 2021 Sci. Rep. 11 12628
[26] Wang J, Zhang C H, Yang L J, Qian X R, Li J and Wang Q 2021 Chin. Phys. B 30 070304
[27] Sun C W, Wu S H, Duan J C, Zhou J W, Xia J L, Xu P, Xie Z D, Gong Y X and Zhu S N 2019 Opt. Lett. 44 5598
[28] Ma B, Wei S H, Chen Z S, Shang X J, Ni H Q and Niu Z C 2018 Chin. Phys. B 27 097802
[29] Zhang Q Y, Xu P and Zhu S N 2018 Chin. Phys. B 27 054207
[30] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[31] Upton L, Harpham M, Suzer O, Richter M, Mukamel S and Goodson T 2013 J. Phys. Chem. 4 2046
[32] Bránczyk A M, Ralph T C, Helwig W and Silberhorn C 2010 New J. Phys. 12 063001
[33] Christ A, Lupo C, Reichelt M, Meier T and Silberhorn C 2014 Phys. Rev. A 90 023823
[34] Evan M S, Nicola M, Johannes T, Linda S, Harald H, Tim J B and Christine S 2017 Phys. Rev. A 95 061803
[35] Vittorio G, Lorenzo M, Jeffrey H S and Franco N C W 2002 Phys. Rev. Lett. 88 183602
[36] Vittorio G, Lorenzo M, Jeffrey H So and Franco N C W 2002 Phys. Rev. A 66 043813
[37] Zhang Q Y, Xue G T, Xu P, Gong Y X, Xie Z D and Zhu S N 2018 Phys. Rev. A 97 022327
[38] Jin R B, Cai N, Huang Y, Hao X Y, Wang S, Li F, Song H Z, Zhou Q and Shimizu R 2019 Phys. Rev. A 11 034067
[39] Laudenbach F, Jin R B, Greganti C, Hentschel M,Walther P and Hübel 2017 Phys. Rev. Appl. 8 024035
[40] Wei B, Cai W H, Ding C L, D G W, Shimizu R, Zhou Q and Jin R B 2021 Opt. Express 29 256
[41] Gayer O, Sacks Z, Galun E and Arie A 2008 Appl. Phys. B 91 343
[42] Liscidini M and Sipe J E 2013 Phys. Rev. Lett. 111 193602
[43] Law C K, Walmsley I A and Eberly J H 2000 Phys. Rev. Lett. 84 5304
[44] Fabian L, Hannes H, Michael H, Philip W and Andreas P 2016 Opt. Express 24 2712
[45] Andreas C, Kaisa L, Andreas E, Katiúscia N C and Christine S 2011 New J. Phys. 13 033027
[1] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[2] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[3] Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm
Yong-Zhou Xue(薛永洲), Ze-Sheng Chen(陈泽升), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川), De-Sheng Jiang(江德生), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权). Chin. Phys. B, 2017, 26(8): 084202.
[4] Tunable femtosecond near-infrared source based on a Yb:LYSO-laser-pumped optical parametric oscillator
Wen-Long Tian(田文龙), Zhao-Hua Wang(王兆华), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014207.
[5] Cryptanalysis of fair quantum blind signatures
He Li-Bao(何立宝), Huang Liu-Sheng(黄刘生), Yang Wei(杨威), and Xu Rui(许瑞) . Chin. Phys. B, 2012, 21(3): 030306.
[6] Fair quantum blind signatures
Wang Tian-Yin(王天银) and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(6): 060307.
[7] Secure authentication of classical messages with single photons
Wang Tian-Yin(王天银), Wen Qiao-Yan(温巧燕), and Zhu Fu-Chen(朱甫臣). Chin. Phys. B, 2009, 18(8): 3189-3192.
[8] Economical quantum secure direct communication network with single photons
Deng Fu-Guo(邓富国), Li Xi-Han(李熙涵), Li Chun-Yan(李春燕), Zhou Ping(周萍), and Zhou Hong-Yu(周宏余). Chin. Phys. B, 2007, 16(12): 3553-3559.
No Suggested Reading articles found!