Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120514    DOI: 10.1088/1674-1056/ac20c7
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Cascade discrete memristive maps for enhancing chaos

Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞)
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  Continuous-time memristor (CM) has been widely used to generate chaotic oscillations. However, discrete memristor (DM) has not been received adequate attention. Motivated by the cascade structure in electronic circuits, this paper introduces a method to cascade discrete memristive maps for generating chaos and hyperchaos. For a discrete-memristor seed map, it can be self-cascaded many times to get more parameters and complex structures, but with larger chaotic areas and Lyapunov exponents. Comparisons of dynamic characteristics between the seed map and cascading maps are explored. Meanwhile, numerical simulation results are verified by the hardware implementation.
Keywords:  chaos      discrete memristor      cascade chaotic system      bifurcation  
Received:  08 July 2021      Revised:  16 August 2021      Accepted manuscript online:  25 August 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  84.32.-y (Passive circuit components)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61801271, 61973200, and 91848206), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019BF007), the Qingdao Science and Technology Plan Project (Grant No. 19-6-2-9-cg), the Elite Project of Shandong University of Science and Technology, the Taishan Scholar Project of Shandong Province of China, and the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents.
Corresponding Authors:  Fang Yuan     E-mail:  yf210yf@163.com

Cite this article: 

Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞) Cascade discrete memristive maps for enhancing chaos 2021 Chin. Phys. B 30 120514

[1] Chua L 2014 Semicond. Sci. Tech. 29 104001
[2] Gu W Y, Wang G Y, Dong Y J and Ying J J 2020 Chin. Phys. B 29 110503
[3] Lai Q, Wan Z Q, Kengne L K, Kuate P D K and Chen C Y 2021 IEEE T. Circuits-II 68 2197
[4] Deng Y and Li Y X 2021 Chaos 31 043103
[5] Xue W H, Ci W J, Xu X H and Liu G 2020 Chin. Phys. B 29 048401
[6] Zhou Y, Hu X F, Wang L D and Duan S K. 2021 Sci. China-Inform. Sci. 64 160408
[7] Sahu D P, Jetty P and Jammalamadaka S N 2021 Nanotechnol. 32 155701
[8] Parit A K, Yadav M S, Gupta A K, Mikhaylov A and Rawat B 2021 Chaos Soliton. Fract. 145 110818
[9] Ushakov Y, Balanov A and Savel'ev S 2021 Chaos Soliton. Fract. 145 110803
[10] He S B, Sun K H and Wu X M 2020 Phys. Scr. 95 035220
[11] Shi Q Y, Huang X, Yuan F and Li Y X 2021 Chin. Phys. B 30 020507
[12] Gu W Y, Wang G Y, Dong Y J and Ying J J 2020 Chin. Phys. B 29 110503
[13] Chen J J, Yan D W, Duan S K and Wang L D 2020 Chin. Phys. B 29 110504
[14] Ouannas A, Khennaoui A A, Momani S, Pham V T and El-Khazali R 2020 Chin. Phys. B 29 050504
[15] Wu H G, Bao H, Xu Q and Chen M 2019 Complexity 2019 3687635
[16] Wang F P and Wang F Q 2020 Chin. Phys. B 29 058502
[17] Wu H G, Ye Y, Chen M, Xu Q and Bao B C 2019 IEEE Access 7 145022
[18] Hua Z Y and Zhou Y C 2021 IEEE T. Syst. Man Cy-s. 51 3713
[19] Li C Q, Lin D D, Lu J H and Hao F 2018 IEEE Multimedia 25 46
[20] Zhao C and Wu B 2021 Chin. Phys. Lett. 38 030502
[21] Zhang J C, Ren W K and Jin N D 2020 Chin. Phys. Lett. 37 090501
[22] Wu H G, Ye Y, Bao B C, Chen M and Xu Q 2019 Chaos Soliton. Fract. 121 178
[23] Bao B C, Bao H, Wang N, Chen M and Xu Q 2017 Chaos Soliton. Fract. 94 102
[24] Gu M Y, Wang G Y, Liu J B, Liang Y, Dong Y J and Ying J J 2021 Int. J. Bifurcat. Chaos 31 2130018
[25] Bao B C, Zhu Y X, Ma J, Bao H, Wu H G and Chen M 2021 Sci. China-Technol. Sci. 64 1107
[26] Yuan F, Li Y X and Wang G Y 2021 Chaos 31 021102
[27] Yuan F, Deng Y, Li Y X and Chen G R 2019 Chaos 29 053120
[28] Chua L O and Kang S M 1976 Proc. IEEE 64 209
[29] Peng Y X, He S B and Sun K H 2021 Results Phys. 24 104106
[30] Peng Y X, He S B and Sun K H 2021 AEU-Int. J. Electron. Commun. 129 153539
[31] He S B, Sun K H, Peng Y X and Wang L 2020 AIP Adv. 10 015332
[32] Peng Y X, Sun K H and He S B 2020 Chaos Soliton. Fract. 137 109873
[33] Bao B C, Li H Z, Wu H G, Zhang X and Chen M 2020 Electron. Lett. 56 769
[34] Li H Z, Hua Z Y, Bao H, Zhu L and Bao B C 2020 IEEE Trans. Ind. Electron. 68 9931
[35] Deng Y and Li Y X 2021 Chaos Soliton. Fract. 150 111064
[36] Bao H, Hua Z Y, Li H Z, Chen M and Bao B C 2021 IEEE T. Circuits-I 68 4534
[1] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[2] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[3] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[4] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[5] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[6] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[7] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[8] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[9] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[10] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[11] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[12] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[13] Enhance sensitivity to illumination and synchronization in light-dependent neurons
Ying Xie(谢盈), Zhao Yao(姚昭), Xikui Hu(胡锡奎), and Jun Ma(马军). Chin. Phys. B, 2021, 30(12): 120510.
[14] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[15] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
No Suggested Reading articles found!