Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010305    DOI: 10.1088/1674-1056/ac20c6
GENERAL Prev   Next  

Quantum multicast communication over the butterfly network

Xing-Bo Pan(潘兴博)1, Xiu-Bo Chen(陈秀波)1,†, Gang Xu(徐刚)2, Zhao Dou(窦钊)1, Zong-Peng Li(李宗鹏)3,4, and Yi-Xian Yang(杨义先)1
1 Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Information Science and Technology, North China University of Technology, Beijing 100144, China;
3 Huawei Technologies Co. Ltd, Shenzhen 518129, China;
4 School of Computer Science, Wuhan University, Wuhan 430072, China
Abstract  We propose a scheme where one can exploit auxiliary resources to achieve quantum multicast communication with network coding over the butterfly network. In this paper, we propose the quantum 2-pair multicast communication scheme, and extend it to k-pair multicast communication over the extended butterfly network. Firstly, an EPR pair is shared between each adjacent node on the butterfly network, and make use of local operation and classical communication to generate entangled relationship between non-adjacent nodes. Secondly, each sender adds auxiliary particles according to the multicast number k, in which the CNOT operations are applied to form the multi-particle entangled state. Finally, combined with network coding and free classical communication, quantum multicast communication based on quantum measurements is completed over the extended butterfly network. Not only the bottleneck problem is solved, but also quantum multicast communication can be completed in our scheme. At the same time, regardless of multicast number k, the maximum capacity of classical channel is 2 bits, and quantum channel is used only once.
Keywords:  quantum nondemolition measurement      special single particle basis      quantum network coding      quantum multicast communication  
Received:  14 June 2021      Revised:  13 August 2021      Accepted manuscript online:  25 August 2021
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92046001, 61671087, 61962009, and 61971021), the Fundamental Research Funds for the Central Universities (Grant Nos. 2019XD-A02 and 2020RC38), the Fund from Huawei Technologies Co. Ltd (Grant No. YBN2020085019), the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data (Grant No. 2018BDKFJJ018), the Fundamental Research Funds for Beijing Municipal Commission of Education, the Scientific Research Launch Funds of North China University of Technology, and Beijing Urban Governance Research Base of North China University of Technology.
Corresponding Authors:  Xiu-Bo Chen     E-mail:  cflyover100@163.com

Cite this article: 

Xing-Bo Pan(潘兴博), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), Zhao Dou(窦钊), Zong-Peng Li(李宗鹏), and Yi-Xian Yang(杨义先) Quantum multicast communication over the butterfly network 2022 Chin. Phys. B 31 010305

[1] Ahlswede R, Cai N, Li S Y R and Yeung R W 2000 IEEE Trans. Inf. Theory 46 1204
[2] Cai N and Yeung R W 2002 Proceedings IEEE International Symposium on Information Theory, June 30–July 5, Lausanne, Switzerland, p. 323
[3] Li S Y R, Yeung R W and Cai N 2003 IEEE Trans. Inf. Theory 49 371
[4] Dimakis A G, Godfrey P B, Wu Y, Wainwright M J and Ramchandran K 2010 IEEE Trans. Inf. Theory 56 4539
[5] Tsimbalo E, Tassi A and Piechocki R J 2018 IEEE T. Commun. 66 2547
[6] Malathy S, Porkodi V, Sampathkumar A, Nour Hindia M H D, Dimyati K, Tilwari V, Qamar F and Amiri I S 2020 Wireless. Netw. 26 3657
[7] Hayashi M, Iwama K and Nishimura H 2007 Proceedings of the 24th Annual Conference on Theoretical Aspects of Computer Science, Berlin, pp. 610–621
[8] Wootters W K and Zurek W H 1982 Nature 299 802
[9] Kobayashi H, Le Gall F, Nishimura H and Rötteler M 2009 International Colloquium on Automata, Languages, and Programming, (Berlin, Heidelberg: Springer), pp. 622–633
[10] Kobayashi H, Le Gall F, Nishimura H and Rötteler M 2010 IEEE International Symposium on Information Theory, June 13–18, Austin, TX, USA, pp. 2686–2690
[11] Kobayashi H, Le Gall F, Nishimura H and Rötteler M 2011 IEEE International Symposium on Information Theory Proceedings, July 31– August 5, St. Petersburg, Russia, 09–113
[12] Hayashi M 2007 Phys. Rev. A 76 040301
[13] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters M K 1993 Phys. Rev. Lett. 70 1895
[14] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[15] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641
[16] Ma S Y, Chen X B, Luo M X, Niu X X and Yang Y X 2010 Opt. Commun. 283 497
[17] Li J, Chen X B, Xu G, Yang Y X and Li Z P 2014 IEEE Commun. Lett. 19 115
[18] Chen X B, Wang Y L, Xu G and Yang Y X 2019 IEEE Access 7 13634
[19] Li Z Z, Xu G, Chen X B, Qu Z G, Niu X X and Yang Y X 2019 Sci. China. Inf. Sci. 62 12501
[20] Leung D, Oppenheim J and Winter A 2010 IEEE Trans. Inf. Theory 56 3478
[21] Satoh T, Le Gall F and Imai H 2012 Phys. Rev. A 86 032331
[22] Shang T, Li J, Pei Z and Liu J W 2015 Quantum Inf. Process. 14 3533
[23] Satoh T, Ishizaki K, Nagayama S and Van Meter R 2016 Phys. Rev. A 93 032302
[24] Pan X B, Xu G, Li Z P, Chen X B and Yang Y X 2021 Quantum Inf. Process. 20 65
[25] Lu H, Li Z D, Yin X F, et al. 2019 npj. Quantum Inf. 5 89
[26] Pathumsoot P, Matsuo T, Satoh T, Hajdušek M, Suwanna S and Van Meter R 2020 Phys. Rev. A 101 052301
[27] Shi Y and Soljanin E 2006 40th Annual Conference on Information Sciences and Systems, March 22–24, Princeton, NJ, USA, p. 871
[28] Li Y Y, Jiao L C, Zhao J J and Wu Q Y 2009 IEEE International Conference on Systems, Man and Cybernetics, October 11–14, San Antonio, TX, USA, pp. 1496–1501
[29] Xing H L, Ji Y F, Bai L and Sun Y M 2010 AEU-Int. J. Electron. C 64 1105
[30] Xu G, Chen X B, Li J, Wang C, Yang Y X and Li Z P 2015 Quantum Inf. Process. 14 4297
[31] Wojcik A, Luczak T, Kurzynski P, Grudka A, Gdala T and Bednarska M 2007 Phys. Rev. A 75 022330
[32] Yu X T, Zhang Z C and Xu J 2013 Chin. Phys. B 23 010303
[33] Nguyen H V, Babar Z, Alanis D, Botsinis P, Chandra D, Izhar M A M, Ng S X and Hanzo L 2017 IEEE Access 5 17288
[34] Pirandola S 2019 Commun. Phys. 2 51
[35] Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214
[36] Li D D, Gao F, Qin S J and Wen Q Y 2018 Quantum Inf. Process 17 13
[37] Pati A K 2000 Phys. Rev. A 61 022308
[38] Nielsen M A and Chuang I L 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[39] Braginsky V B, Vorontsov Y I and Thorne K S 1980 Science 209 547
[40] Lupascu A, Saito S, Picot T, Groot P C D, Harmans C J P M and Mooij J E 2007 Nat. Phys. 3 119
[41] Nakajima T, Noiri A, Yoneda J, et al. 2019 Nat. Nanotechnol. 14 555
[42] Zhan Y B 2005 Phys. Lett. A 336 317
[43] Xiao X Q and Liu J M 2011 Quantum. Inf. Process. 10 567
[44] Yu Y and Zhao N 2018 Opt. Express 26 29296
[45] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[46] Simon C 2017 Nat. Photon. 11 678
[47] Stephenson L J, Nadlinger D P, Nichol B C, An S, Drmota P, Ballance T G, Thirumalai K, Goodwin J F, Lucas D M and Ballance C J 2020 Phys. Rev. Lett. 124 110501
[1] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[2] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[3] Quantum nondemolition measurements of a flux qubit coupled to a noisy detector
Jiang Wei(姜伟), Yu Yang(于扬), and Wei Lian-Fu(韦联福) . Chin. Phys. B, 2011, 20(8): 080307.
[4] Quantum nondemolition measurement of photon-number distribution for a weak cavity field with resonant atoms
Zheng Shi-Biao (郑仕标). Chin. Phys. B, 2003, 12(1): 51-54.
No Suggested Reading articles found!