Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 128201    DOI: 10.1088/1674-1056/ac1f07
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Morphological effect on electrochemical performance of nanostructural CrN

Zhengwei Xiong(熊政伟)1,†, Xuemei An(安雪梅)4,†, Qian Liu(刘倩)1, Jiayi Zhu(朱家艺)1, Xiaoqiang Zhang(张小强)2, Chenchun Hao(郝辰春)1,‡, Qiang Yang(羊强)3, Zhipeng Gao(高志鹏)3, and Meng Zhang(张盟)1
1 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China;
2 Institute of Electronic Engineering, China Academy of Engineering Physics(CAEP), Mianyang 621900, China;
3 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
4 Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
Abstract  Size and morphology are critical factors in determining the electrochemical performance of the supercapacitor materials, due to the manifestation of the nanosize effect. Herein, different nanostructures of the CrN material are prepared by the combination of a thermal-nitridation process and a template technique. High-temperature nitridation could not only transform the hexagonal Cr2O3 into cubic CrN, but also keep the template morphology barely unchanged. The obtained CrN nanostructures, including (i) hierarchical microspheres assembled by nanoparticles, (ii) microlayers, and (iii) nanoparticles, are studied for the electrochemical supercapacitor. The CrN microspheres show the best specific capacitance (213.2 F/g), cyclic stability (capacitance retention rate of 96% after 5000 cycles in 1-mol/L KOH solution), high energy density (28.9 Wh/kg), and power density (443.4 W/kg), comparing with the other two nanostructures. Based on the impedance spectroscopy and nitrogen adsorption analysis, it is revealed that the enhancement arised mainly from a high-conductance and specific surface area of CrN microspheres. This work presents a general strategy of fabricating controllable CrN nanostructures to achieve the enhanced supercapacitor performance.
Keywords:  CrN      supercapacitors      metal nitride      nanostructures  
Received:  17 May 2021      Revised:  10 August 2021      Accepted manuscript online:  19 August 2021
PACS:  82.47.Uv (Electrochemical capacitors; supercapacitors)  
  77.74.Bw  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  91.60.Ed (Crystal structure and defects, microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904299, U1930124, and 11804312) and China Academy of Engineering Physics (CAEP) Foundation (Grant No. 2018AB02).
Corresponding Authors:  Chenchun Hao     E-mail:  haochenchun@swust.edu.cn

Cite this article: 

Zhengwei Xiong(熊政伟), Xuemei An(安雪梅), Qian Liu(刘倩), Jiayi Zhu(朱家艺), Xiaoqiang Zhang(张小强), Chenchun Hao(郝辰春), Qiang Yang(羊强), Zhipeng Gao(高志鹏), and Meng Zhang(张盟) Morphological effect on electrochemical performance of nanostructural CrN 2021 Chin. Phys. B 30 128201

[1] Shao Y, El-Kady M F, Sun J, et al. 2018 Chem. Rev. 118 9233
[2] Han N, Liu P Y, Jiang J, et al. 2018 J. Mater. Chem. A 6 19912
[3] Naik G V, Schroeder J L, Ni X, et al. 2012 Opt. Mater. Express 2 478
[4] Haider W A, Tahir M, He L, et al. 2020 ACS Cent. Sci. 6 1901
[5] Balogun M S, Zeng Y, Qiu W, et al. 2016 J. Mater. Chem. A 4 9844
[6] Kao E, Yang C, Warren R, et al. 2016 Sens. Actuator A Phys. 240 160
[7] Lucio-Porto R, Bouhtiyya S, Pierson J F, et al. 2014 Electrochim. Acta 141 203
[8] Eustache E, Frappier R, Porto R L, et al. 2013 Electrochem. Commun. 28 104
[9] Shah S I U, Hector A L and Owen J R 2014 J. Power Sources 266 456
[10] Wei B B, Liang H F, Zhang D F, et al. 2017 J. Mater. Chem. A 5 2844
[11] Das B, Behm M, Lindbergh G, et al. 2015 Adv. Powder Technol. 26 783
[12] Wei B B, Mei G, Liang H F, et al. 2018 J. Power Sources 385 39
[13] Zhang M, Xiong Z W, Jia J Z, et al. 2020 J. Electroanal. Chem. 856 113696
[14] Haye E, Achour A, Guerra A, et al. 2019 Electrochim. Acta 324 134890
[15] Shi J, Jiang B L, Li C, et al. 2020 Mater. Chem. Phys. 245 122533
[16] Zheng Y, Zhou T F, Zhao X D, et al. 2017 Adv. Mater. 29 1700396
[17] Wang C, Zhou P, Wang Z Y, et al. 2018 RSC Adv. 8 12841
[18] Hou Z Q, Guo K, Li H Q, et al. 2016 CrystEngComm 18 3040
[19] Abdelaal H 2015 Appl. Sci. Lett. 1 24
[20] Xu X Y, Wu J, Yang N, et al. 2015 Mater. Lett. 142 172
[21] Zhao L, Wang L, Yu P, et al. 2015 Chem. Commun. 51 12399
[22] Subramanian B and Jayachandran M 2011 Eng. Sci. Technol. 46 554
[23] Milošv I, Strehblow H H, Navinšek B, et al. 1995 Surf. Interface Anal. 23 529
[24] Wu J B, Lin Y F, Wang J L, et al. 2003 Inorg. Chem. 42 4516
[25] Kaltenbrunner M, Adam G, Glowacki E D, et al. 2015 Nat. Mater. 14 1032
[26] Cao X H, Zheng B, Shi W H, et al. 2015 Adv. Mater. 27 4695
[27] Jiang H, Niu H, Yang X, et al. 2018 Chem. Eur. J. 24 10683
[28] Xiong Z W, Yang J, Gao Z P, et al. 2020 Results Phys. 16 102941
[29] Nagaraju D H, Wang Q, Beaujuge P, et al. 2014 J. Mater. Chem. A 2 17146
[30] Jiang Y Q, Chen L Y, Zhang H Q, et al. 2016 Chem. Eng. J. 292 1
[31] Bauer D, Roberts A J, Matsumi N, et al. 2017 Nanotechnology 28 195403
[32] Tan Y T, Dong W J, Li Y, et al. 2018 New J. Chem. 42 17895
[33] Xia C, Xie Y B, Wang Y, et al. 2013 J. Appl. Electrochem. 43 1225
[34] Dong, S M, Chen X, Gu L, et al. 2011 ACS Appl. Mater. Interfaces 3 93
[35] Wang R T, Lang J W, Zhang P, et al. 2015 Adv. Funct. Mater. 25 2270
[36] Xiao X, Peng X, Jin H Y, et al. 2013 Adv. Mater. 25 5091
[37] Peng X, Wang L, Hu L S, et al. 2017 Nano Energy 34 1
[38] Yu Z, Tetard L, Zhai L, et al. 2015 Energy Environ. Sci. 8 702
[1] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[2] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[3] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[4] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[5] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[6] Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(4): 047105.
[7] Superchiral fields generated by nanostructures and their applications for chiral sensing
Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东). Chin. Phys. B, 2021, 30(11): 113303.
[8] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[9] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[10] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[11] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[12] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[13] Lorentz transmission electron microscopy for magnetic skyrmions imaging
Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮). Chin. Phys. B, 2019, 28(8): 087503.
[14] Unidirectional plasmonic Bragg reflector based on longitudinally asymmetric nanostructures
Mingsong Chen(陈名松), Lulu Pan(潘璐璐), Yuanfu Lu(鲁远甫), Guangyuan Li(李光元). Chin. Phys. B, 2019, 28(7): 074208.
[15] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
No Suggested Reading articles found!