Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097807    DOI: 10.1088/1674-1056/ac1f06
REVIEW Prev   Next  

Signal-to-noise ratio of Raman signal measured by multichannel detectors

Xue-Lu Liu(刘雪璐)1, Yu-Chen Leng(冷宇辰)1,2, Miao-Ling Lin(林妙玲)1, Xin Cong(从鑫)1,2, and Ping-Heng Tan(谭平恒)1,2,†
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering&CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Raman spectroscopy has been widely used to characterize the physical properties of two-dimensional materials (2DMs). The signal-to-noise ratio (SNR or S/N ratio) of Raman signal usually serves as an important indicator to evaluate the instrumental performance rather than Raman intensity itself. Multichannel detectors with outstanding sensitivity, rapid acquisition speed and low noise level have been widely equipped in Raman instruments for the measurement of Raman signal. In this mini-review, we first introduce the recent advances of Raman spectroscopy of 2DMs. Then we take the most commonly used CCD detector and IGA array detector as examples to overview the various noise sources in Raman measurements and analyze their potential influences on SNR of Raman signal in experiments. This overview can contribute to a better understanding on the SNR of Raman signal and the performance of multichannel detector for numerous researchers and instrumental design for industry, as well as offer practical strategies for improving spectral quality in routine measurement.
Keywords:  multichannel detectors      signal-to-noise ratio      dark noise      shot noise  
Received:  08 June 2021      Revised:  01 August 2021      Accepted manuscript online:  19 August 2021
PACS:  78.30.-j (Infrared and Raman spectra)  
  43.50.Yw (Instrumentation and techniques for noise measurement and analysis)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  43.60.Cg (Statistical properties of signals and noise)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301204), the National Natural Science Foundation of China (Grant No. 11874350), and Key Research Program of the Chinese Academy of Sciences (Grant Nos. XDPB22 and ZDBS-LY-SLH004).
Corresponding Authors:  Ping-Heng Tan     E-mail:

Cite this article: 

Xue-Lu Liu(刘雪璐), Yu-Chen Leng(冷宇辰), Miao-Ling Lin(林妙玲), Xin Cong(从鑫), and Ping-Heng Tan(谭平恒) Signal-to-noise ratio of Raman signal measured by multichannel detectors 2021 Chin. Phys. B 30 097807

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
[3] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G and Marzari N 2018 Nat. Nanotechnol. 13 246
[4] Li X L, Han W P, Wu J B, Qiao X F, Zhang J and Tan P H 2017 Adv. Funct. Mater. 29 1604468
[5] Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S and Ferrari A C 2007 Nano Lett. 7 2711
[6] Bruna M and Borini S 2009 Appl. Phys. Lett. 94 031901
[7] Li Y L, Rao Y, Mak K F, You Y M, Wang S Y, Dean C R and Heinz T F 2013 Nano Lett. 13 3329
[8] Seyler K L, Rivera P, Yu H Y, Wilson N P, Ray E L, Mandrus D G, Yan J Q, Yao W and Xu X D 2019 Nature 567 66
[9] Zhang X, Han W P, Wu J B, Milana S, Lu Y, Li Q Q, Ferrari A C and Tan P H 2013 Phys. Rev. B 87 115413
[10] Ferrari A C and Basko D M 2013 Nat. Nanotech. 8 235
[11] Puretzky A A, Liang L B, Li X F, Xiao K, Wang K, MahjouriSamani M, Basile L, Idrobo J C, Sumpter B G, Meunier V and Geohegan D B 2015 ACS Nano 9 6333
[12] Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S and Tan P H 2015 Chem. Soc. Rev. 44 2757
[13] Wu J B, Lin M L, Cong X, Liu H N and Tan P H 2018 Chem. Soc. Rev. 47 1822
[14] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[15] Zhao W J, Tan P H, Zhang J and Liu J 2010 Phys. Rev. B 82 245423
[16] Cong C X, Yu T, Sato K, Shang J Z, Saito R, Dresselhaus G F and Dresselhaus M S 2011 ACS Nano 5 8760
[17] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695
[18] Luo X, Zhao Y Y, Zhang J, Xiong Q H and Quek S Y 2013 Phys. Rev. B 88 075320
[19] Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A and Ferrari A C 2012 Nat. Mater. 11 294
[20] Liang L B, Zhang J, Sumpter B G, Tan Q H, Tan P H and Meunier V 2017 ACS Nano 11 11777
[21] Park H, Shin G H, Lee K J and Choi S Y 2020 Nano Res. 13 576
[22] Debnath R, Maity I, Biswas R, Raghunathan V, Jain M and Ghosh A 2020 Nanoscale 12 17272
[23] Chen C, Chen X L, Yu H Y, Shao Y C, Guo Q S, Deng B C, Lee S, Ma C, Watanabe K, Taniguchi T, Park J G, Huang S X, Yao W and Xia F N 2019 ACS Nano 13 552
[24] Holler J, Meier S, Kempf M, Nagler P, Watanabe K, Taniguchi T, Korn T and Schuller C 2020 Appl. Phys. Lett. 117 013104
[25] Lin M L, Tan Q H, Wu J B, Chen X S, Wang J H, Pan Y H, Zhang X, Cong X, Zhang J, Ji W, Hu P A, Liu K H and Tan P H 2018 ACS Nano 12 8770
[26] Parzefall P, Holler J, Scheuck M, Beer A, Lin K Q, Peng B, Monserrat B, Nagler P, Kempf M, Korn T and Schuller C 2021 2D Mater. 8 035030
[27] Lin M L, Zhou Y, Wu J B, Cong X, Liu X L, Zhang J, Li H, Yao W and Tan P H 2019 Nat. Commun. 10 2419
[28] McCreery R L 2000 Raman Spectroscopy for Chemical Analysis (John Wiley& Sons, Inc.) pp. 49–61
[29] Chen S, Lin X Q, Yuen C, Padmanabhan S, Beuerman R W and Liu Q 2014 Opt. Express 22 12102
[30] Kibria B M G and George F 2014 Commun. Stat. Simul. Comput. 43 443
[31] Fan X G, Zeng Y J, Zhi Y L, Nie T, Xu Y J and Wang X 2021 J. Raman Spectrosc. 52 890
[32] Schulze H G, Yu M M L, Addison C J, Blades M W and Turner R F B 2006 Appl. Spectrosc. 60 820
[33] Barton S J, Ward T E and Hennelly B M 2018 Anal. Methods 10 3759
[34] Tan P H 2018 Raman Spectroscopy of two-dimensional materials (Singapore: Springer)
[35] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[36] Zhang X, Tan Q H, Wu J B, Shi W and Tan P H 2016 Nanoscale 8 6435
[37] Cong X, Lin M L and Tan P H 2016 J. Semicond. 40 091001
[38] Wu J B, Zhang X, Ijäs M, Han W P, Qiao X F, Li X L, Jiang D S, Ferrari A C and Tan P H 2014 Nat. Commun. 5 5309
[39] Stenger I, Schue L, Boukhicha M, Berini B, Placais B, Loiseau A and Barjon J 2017 2D Mater. 4 031003
[40] Yagmurcukardes M, Peeters F M and Sahin H 2018 Phys. Rev. B 98 085431
[41] Lui C H, Ye Z P, Ji C, Chiu K C, Chou C T, Andersen T I, MeansShively C, Anderson H, Wu J M, Kidd T, Lee Y H and He R 2015 Phys. Rev. B 91 165403
[42] Huang S X, Liang L B, Ling X, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V and Dresselhaus M S 2016 Nano Lett. 16 1435
[43] Leng Y C, Lin M L, Zhou Y, Wu J B, Meng D, Cong X, Li H and Tan P H 2021 Nanoscale 13 9732
[44] Wu J B, Hu Z X, Zhang X, Han W P, Lu Y, Shi W, Qiao X F, Ijäs M, Milana S, Ji W, Ferrari A C and Tan P H 2015 ACS Nano 9 7440
[45] Li H, Wu J B, Ran F R, Lin M L, Liu X L, Zhao Y Y, Lu X, Xiong Q H, Zhang J, Huang W, Zhang H and Tan P H 2017 ACS Nano 11 11714
[46] Froehlicher G, Lorchat E, Fernique F, Joshi C, Molina-Sanchez A, Wirtz L and Berciaud S 2015 Nano Lett. 15 6481
[47] Song Q J, Tan Q H, Zhang X, Wu J B, Sheng B W, Wan Y, Wang X Q, Dai L and Tan P H 2016 Phys. Rev. B 93 115409
[48] Tan Q H, Zhang X, Luo X D, Zhang J and Tan P H 2017 J. Semicond. 38 031006
[49] Na W, Kim K, Lee J U and Cheong H 2019 2D Mater. 6 015004
[50] Chen H, Xu W L, Broderick N and Han J D 2018 J. Raman Spectrosc. 49 1529
[51] Mu Z D, Zhao X W. Xie Z Y, Zhao Y J, Zhong Q F, Bo L and Gu Z Z 2013 J. Mater. Chem. B 1 1607
[52] McCreery R L 2000 Raman Spectroscopy for Chemical Analysis (John Wiley& Sons, Inc.) p. 188
[53] Stchur P, Cleveland D, Zhou J and Michel R G 2002 Appl. Spectrosc. Rev. 37 383
[54] Zong C, Xu M X, Xu L J, Wei T, Ma X, Zheng X S, Hu R and Ren B 2018 Chem. Rev. 118 4946
[55] Liu W, Liu S L, Chen D N and Niu H B 2014 Chin. Phys. B 23 104202
[56] Zonios G 2010 Appl. Opt. 49 163
[57] Tan P H, Xu Z Y, Luo X D, Ge W K, Zhang Y, Mascarenhas A, Xin H P and Tu C W 2006 Appl. Phys. Lett. 89 101912
[1] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[2] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[3] Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging
Wali Faiz, Ji Li(李冀), Kun Gao(高昆), Zhao Wu(吴朝), Yao-Hu Lei(雷耀虎), Jian-Heng Huang(黄建衡), Pei-Ping Zhu(朱佩平). Chin. Phys. B, 2020, 29(1): 014301.
[4] Effects of interface bound states on the shot noise in normal metal-low-dimensional Rashba semiconductor tunnel junctions with induced s-wave pairing potential
Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2019, 28(5): 057201.
[5] Cryogenic amplifier with low input-referred voltage noise calibrated by shot noise measurement
Wuhao Yang(杨伍昊), Jian Wei(危健). Chin. Phys. B, 2018, 27(6): 060702.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Implication of two-coupled tri-stable stochastic resonance in weak signal detection
Quan-Quan Li(李泉泉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2018, 27(3): 034203.
[8] Noise analysis of grating-based x-ray differential phase-contrast imaging with angular signal radiography
Wali Faiz, Yuan Bao(鲍园), Kun Gao(高昆), Zhao Wu(吴朝), Chen-Xi Wei(卫晨希), Gui-Bin Zan(昝贵彬), Pei-Ping Zhu(朱佩平), Yang-Chao Tian(田扬超). Chin. Phys. B, 2017, 26(4): 040602.
[9] Photon-assisted and spin-dependent shot noise in magnetic-field tunable ZnSe/Zn1-xMnxSe structures
Chun-Lei Li(李春雷), Yong Guo(郭永), Xiao-Ming Wang(王小明), Yuan Lv(律原). Chin. Phys. B, 2017, 26(2): 027301.
[10] Enhancement of signal-to-noise ratio of ultracold polar NaCs molecular spectra by phase locking detection
Wenhao Wang(王文浩), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Xiaofeng Wang(王晓锋), Yanyan Liu(刘艳艳), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(12): 123701.
[11] Signal-to-noise ratio comparison of angular signal radiography and phase stepping method
Wali Faiz, Peiping Zhu(朱佩平), Renfang Hu(胡仁芳), Kun Gao(高昆), Zhao Wu(吴朝), Yuan Bao(鲍园), Yangchao Tian(田扬超). Chin. Phys. B, 2017, 26(12): 120601.
[12] Multi-step shot noise spectrum induced by a local large spin
Niu Peng-Bin, Shi Yun-Long, Sun Zhu, Nie Yi-Hang. Chin. Phys. B, 2015, 24(12): 127309.
[13] Stochastic resonance in an over-damped linear oscillator
Lin Li-Feng, Tian Yan, Ma Hong. Chin. Phys. B, 2014, 23(8): 080503.
[14] Theory of noise in a kilo-Hz cascaded high-energy Yb-doped nanosecond pulsed fiber amplifier
Liu Ming, Zhang Hai-Tao, Gong Ma-Li, Zhao Yue-Jin, Cheng Wen-Yong, Meng Kuo, Zheng Chao, Chen Yi-Zhu. Chin. Phys. B, 2014, 23(4): 044214.
[15] Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes
Hao Yun-Qi, Ye Qing, Pan Zheng-Qing, Cai Hai-Wen, Qu Rong-Hui. Chin. Phys. B, 2014, 23(11): 110703.
[1] Wang Jun, Liu Yi, Dong Bao-zhong, Li Zhi-hong, Gong Yan-jun, Zhang Ye, Wu Dong, Sun Yu-han. STUDY OF MESOPOROUS SILICA MATERIALS BY SMALL ANGLE X-RAY SCATTERING[J]. Chin. Phys., 2001, 10(5): 429 -432 .
[2] Sheng Yong, Wang Rong, Jiang Gang, Zhu Zheng-he. CALCULATION OF THE FINE STRUCTURE OF OXYGEN-LIKE IONS USING THE POLARIZATION POTENTIAL FUNCTION[J]. Chin. Phys., 2001, 10(6): 505 -511 .
[3] Zhang Li-Chun, Wu Yue-Qin, Zhao Ren. Quantum statistical entropy for Kerr-de Sitter black hole[J]. Chin. Phys., 2004, 13(6): 974 -978 .
[4] Gong Tian-Xi, Li Ai-Gen, Wang Yong-Jiu. Gravitational effect of centre mass with electric charge and a large number of magnetic monopoles[J]. Chin. Phys., 2005, 14(4): 859 -862 .
[5] Liu Guo-Zhi, Huang Wen-Hua, Shao Hao, Xiao Ren-Zhen. Effect of longitudinal applied magnetic field on the self-pinched critical current in intense electron beam diode[J]. Chin. Phys., 2006, 15(3): 600 -603 .
[6] Zhang Ming-Jian, Lang Pei-Lin, Peng Zhi-Hui, Chen Ying-Fei, Chen Ke, Zheng Dong-Ning. High-Tc planar SQUID gradiometer for eddy current non-destructive evaluation[J]. Chin. Phys., 2006, 15(8): 1903 -1908 .
[7] Li Yuan, Zeng Gui-Hua. A (2, 3) quantum threshold scheme based on Greenberger--Horne--Zeilinger state[J]. Chin. Phys., 2007, 16(10): 2875 -2879 .
[8] Pan Chang-Ning, Fang Mao-Fa, Zheng Xiao-Juan, Hu Yao-Hua. Squeezing properties of a trapped ion in the running-wave laser beyond the Lamb--Dicke limit[J]. Chin. Phys., 2007, 16(6): 1549 -1553 .
[9] Zhang Jing-Xiang, Li Hui, Song Xi-Gui, Zhang Jie. Inverse Monte Carlo study on effective interaction potential of Ag--Rh alloy from pair correlation functions[J]. Chin. Phys. B, 2009, 18(12): 5259 -5266 .
[10] Ma Li-Min, Wu Zong-Min. Identifying the temperature distribution in a parabolice quation with overspecified data using a multiquadric quasi-interpolation method[J]. Chin. Phys. B, 2010, 19(1): 10201 -010201 .