Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097403    DOI: 10.1088/1674-1056/ac1efa
RAPID COMMUNICATION Prev   Next  

Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake

Zhaohui Cheng(程朝晖)1, Bin Lei(雷彬)1, Xigang Luo(罗习刚)1,2, Jianjun Ying(应剑俊)1,3, Zhenyu Wang(王震宇)1,3, Tao Wu(吴涛)1,2,3,5,†, and Xianhui Chen(陈仙辉)1,2,3,4,5
1 CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
3 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China;
4 CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China;
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The driving mechanism of nematicity and its twist with superconductivity in iron-based superconductors are still under debate. Recently, a dominant B1g-type strain effect on superconductivity is observed in underdoped iron-pnictides superconductors Ba(Fe1-xCox)2As2, suggesting a strong interplay between nematicity and superconductivity. Since the long-range spin order is absent in FeSe superconductor, whether a similar strain effect could be also observed or not is an interesting question. Here, by utilizing a flexible film as substrate, we successfully achieve a wide-range-strain tuning of FeSe thin flake, in which both the tensile and compressive strain could reach up to ~0.7%, and systematically study the strain effect on both superconducting and nematic transition (Tc and Ts) in the FeSe thin flake. Our results reveal a predominant A1g-type strain effect on Tc. Meanwhile, Ts exhibits a monotonic anti-correlation with Tc and the maximum Tc reaches to 12 K when Ts is strongly suppressed under the maximum compressive strain. Finally, in comparison with the results in the underdoped Ba(Fe1-xCox)2As2, the absence of B1g-type strain effect in FeSe further supports the role of stripe-type spin fluctuations on superconductivity. In addition, our work also supports that the orbital degree of freedom plays a key role to drive the nematic transition in FeSe.
Keywords:  iron-based superconductors      superconductivity      electronic nematicity      strain effect  
Received:  12 August 2021      Revised:  16 August 2021      Accepted manuscript online:  19 August 2021
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.F- (Transport properties)  
  77.80.bn (Strain and interface effects)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303000 and 2016YFA0300201), the National Natural Science Foundation of China (Grant No. 11888101), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000), and the Anhui Initiative in Quantum Information Technologies (Grant No. AHY160000).
Corresponding Authors:  Tao Wu     E-mail:  wutao@ustc.edu.cn

Cite this article: 

Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉) Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake 2021 Chin. Phys. B 30 097403

[1] Fernandes R M and Schmalian J 2012 Supercond. Sci. Technol. 25 084005
[2] Bohmer A E and Kreisel A 2018 J. Phys.: Condens. Matter 30 023001
[3] Chu J H, Analytis J G, Greve K D, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
[4] Tanatar M A, Blomberg E C, Kreyssig A, Kim M G, Ni N, Thaler A, Budko S L, Canfield P C, Goldman A I, Mazin I I and Prozorov R 2010 Phys. Rev. B 81 184508
[5] Fisher I R, Degiorgi L and Shen Z X 2011 Rep. Prog. Phys. 74 124506
[6] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
[7] Chubukov A V, Khodas M, and Fernandes R M 2016 Phys. Rev. X 6 041045
[8] Kim H, Tanatar M A, Straszheim W E, Cho K, Murphy J, Spyrison N, Reid J P, Shen B, Wen H H, Fernandes R M and Prozorov R 2014 Phys. Rev. B 90 014517
[9] Nandi S, Kim M G, Kreyssig A, Fernandes R M, Pratt D K, Thaler A, Ni N, Bud'ko S L, Canfield P C, Schmalian J, McQueeney R J and Goldman A I 2010 Phys. Rev. Lett. 104 057006
[10] Fang C, Yao H, Tsai W F, Hu J and Kivelson S A 2008 Phys. Rev. B 77 224509
[11] Xu C, Müller M and Sachdev S 2008 Phys. Rev. B 78 020501(R)
[12] Fernandes R M, VanBebber L H, Bhattacharaya S, Chandra P, Keppens P, Mandrus D, McGuire M A, Sales B C, Sefat A S and Schmalian J 2010 Phys. Rev. Lett. 105 157003
[13] Song Y, Lu X Y, Abernathy D L, Tam D W, Niedziela J L, Tian W, Luo H Q, Si Q M and Dai P C 2015 Phys. Rev. B 92 180504
[14] Yi M, Lu D H, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R and Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
[15] Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A H, Si Q M and Dai P C 2014 Science 345 657
[16] Zhang W L, Park J T, Lu X Y, Wei Y, Ma X Y, Hao L J, Dai P C, Meng Z Y, Yang Y F, Luo H Q and Li S L 2016 Phys. Rev. Lett. 117 227003
[17] Nabeshima F, Ishikawa T, Oyanagi K I, Kawai M and Maeda A 2018 J. Phys. Soc. Jpn. 87 073704
[18] Licciardello S, Buhot J, Lu J, Ayres J, Kasahara S, Matsuda Y, Shibauchi T and Hussey N E 2019 Nature 567 213
[19] Baek S H, Efremov D V, Ok J M, Kim J S, Brink J and Büchner B 2015 Nat. Mater. 14 210
[20] Fanfarillo L, Mansart J, Toulemonde P, Cercellier H, Le Févre P, Bertran F, Valenzuela B, Benfatto L and Brouet V 2016 Phys. Rev. B 94 155138
[21] Saito T, Onari S and Kontani H 2011 Phys. Rev. B 83 140512
[22] Kreisel A, Hirschfeld P J and Andersen B M 2020 Symmetry 12 1402
[23] Benfatto L, Valenzuela B and Fanfarillo L 2018 Npj Quantum Mater. 3 56
[24] Chu J H, Kuo H H, Analytis J G and Fisher I R 2012 Science 337 710
[25] Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y and Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139
[26] Nabeshima F, Imai Y, Hanawa M, Tsukada I and Maeda A 2013 Appl. Phys. Lett. 103 172602
[27] Feng Z P, Yuan J, He G, Hu W, Lin Z F, Li D, Jiang X Y, Huang Y L, Ni S L, Li J, Zhu B Y, Dong X L, Zhou F, Wang H B, Zhao Z X and Jin K 2018 Sci. Rep. 8 4039
[28] Malinowski P, Jiang Q N, Sanchez J J, Mutch J, Liu Z Y, Went P, Liu J, Ryan P J, Kin J W, and Chu J H 2020 Nat. Phys. 16 1189
[29] Worasaran T, Ikeda M S, Palmstrom J C, Straquadine J A W, Kivelson S A and Fisher I R 2021 Science 372 973
[30] Feng Z P, Yuan J, Li J, Wu X X, Hu W, Shen B, Qin M Y, Zhao L, Zhu B Y, Stanev V, Liu M, Zhang G M, Yang H X, Li J Q, Dong X L, Zhou F, Zhou X J, Kusmartsev F V, Hu J P, Takeuchi I, Zhao Z X and Jin K 2019 arXiv:1807.01273
[31] Tanatar M A, Böhmer A E, Timmons E I, Schütt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M and Prozorov R 2016 Phys. Rev. Lett. 117 127001
[32] Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y and Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139
[33] Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides J S and Bolotin K I 2013 Nano Lett. 13 3626
[34] Zhang Z C, Li L K, Horng J, Wang N Z, Yang F Y, Yu Y J, Zhang Y, Chen G R, Watanabe K, Taniguchi T, Chen X H, Wang F and Zhang Y B 2017 Nano Lett. 17 6097
[35] Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P and Hicks C W 2021 Phys. Rev. X 11 021038
[36] Ghini M, Bristow M, Prentice J C A, Sutherland S, Sanna S, Haghighirad A A and Coldea A I 2021 Phys. Rev. B 103 205139
[37] Nakajima M, Ohata Y and Tajima S 2021 Phys. Rev. Mat. 5 044801
[38] Kinoshita K, Moriya R, Onodera M, Wakafuji Y, Masubuchi S, Watanabe K, Taniguchi T and Machida T 2019 Npj 2D Mater. Appl. 3 22
[39] Roldán R, Castellanos-Gomez A, Cappelluti E and Guinea F 2015 J. Phys. Condens. Matter 27 313201
[40] Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B and Chen X H 2017 Phys. Rev. B. 95 020503
[41] Xia T L, Hou D, Zhao S C, Zhang A M, Chen G F, Luo J L, Wang N L, Wei J H, Lu Z Y and Zhang Q M 2009 Phys. Rev. B 79 140510
[42] Gnezdilov V, Pashkevich Y G, Lemmens P, Wulferding D, Shevtsova T, Gusev A, Chareev D and Vasiliev A 2013 Phys. Rev. B 87 144508
[43] Zhang A M, Ma X L, Wang Y M, Sun S S, Lei B, Lei H C, Chen X H, Wang X Q, Chen C F and Zhang Q M 2019 Phys. Rev. B 100 060504(R)
[44] Zhang Y, Yi M, Liu Z K, Li W, Lee J J, Moore R G, Hashimoto M, Nakajima M, Eisaki H, Mo S K, Hussain Z, Devereaux T P, Shen Z X and Lu D H 2016 Phys. Rev. B 94 115153
[45] Kissikov T, Sarkar R, Lawson M, Bush B T, Timmons E I, Tanatar M A, Prozorov R, Bud'ko S L, Canfield P C, Fernandes R M and Curro N J 2018 Nat. Commun. 9 1058
[46] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146
[47] Fernandes R M and Chubukov A V 2017 Rep. Prog. Phys. 80 014503
[48] Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A and Khasanov R 2010 Phys. Rev. Lett. 104 087003
[49] Phan G N, Nakayama K, Sugawara K, Sato T, Urata T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A and Takahashi T 2017 Phys. Rev. B 95 224507
[1] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[2] Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method
Jun-Nan Sun(孙俊男), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Yin Chen(陈银), Qing-Song Yang(杨清松), Lei Shan(单磊), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2021, 30(7): 077401.
[3] Superconductivity in an intermetallic oxide Hf3Pt4Ge2O
Chengchao Xu(徐程超), Hong Wang(王鸿), Huanfang Tian(田焕芳), Youguo Shi(石友国), Zi-An Li(李子安), Ruijuan Xiao(肖睿娟), Honglong Shi(施洪龙), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇). Chin. Phys. B, 2021, 30(7): 077403.
[4] Inverted V-shaped evolution of superconducting temperature in SrBC under pressure
Ru-Yi Zhao(赵如意), Xun-Wang Yan(闫循旺), and Miao Gao(高淼). Chin. Phys. B, 2021, 30(7): 076301.
[5] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[6] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[7] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[8] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[9] A short review of the recent progresses in the study of the cuprate superconductivity
Tao Li(李涛). Chin. Phys. B, 2021, 30(10): 100508.
[10] Effects of electron correlation on superconductivity in the Hatsugai-Kohmoto model
Huai-Shuang Zhu(祝怀霜) and Qiang Han(韩强). Chin. Phys. B, 2021, 30(10): 107401.
[11] A review of some new perspectives on the theory of superconducting Sr2RuO4
Wen Huang(黄文). Chin. Phys. B, 2021, 30(10): 107403.
[12] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[13] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[14] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[15] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[1] Li Ping, Pang Xiao-feng. QUANTUM-MECHANICAL PROPERTIES OF PROTON TRANSPORT IN THE HYDROGEN-BONDED MOLECULAR SYSTEMS[J]. Chin. Phys., 2000, 9(2): 86 -93 .
[2] Ma Yong, Yang Li-Dong, Yang Hai, Yang Zhi. Influence of external field and particle size upon theoretical photoelectron emission spectral response of silver nano-particles embedded in BaO thin film[J]. Chin. Phys., 2005, 14(8): 1665 -1670 .
[3] Wang Zhi-Yong, Xiong Cai-Dong. On the generator of Lorentz boost[J]. Chin. Phys., 2006, 15(10): 2223 -2227 .
[4] Huang Ji-Ying, Li Ying-Le. The scattering fields for a spherical target irradiated by a plane electromagnetic wave in an arbitrary direction[J]. Chin. Phys., 2006, 15(2): 281 -285 .
[5] Xue Zheng-Yuan, Yi You-Min, Cao Zhuo-Liang. Scheme for sharing classical information via tripartite entangled states[J]. Chin. Phys., 2006, 15(7): 1421 -1424 .
[6] Chen Gui-Ying, Yuan Yi-Zhe, Liang Xin, Xu Tang, Zhang Chun-Ping, Song Qi-Wang. The behaviours of optical novelty filter based on bacteriorhodopsin film[J]. Chin. Phys., 2006, 15(9): 2007 -2011 .
[7] Zhang Jian-Ming, Zou De-Shu, Xu Chen, Guo Wei-Ling, Zhu Yan-Xu, Liang Ting, Da Xiao-Li, Li Jian-Jun, Shen Guang-Di. AlGaInP thin-film LED with omni-directionally reflector and ITO transparent conducting n-type contact[J]. Chin. Phys., 2007, 16(11): 3498 -3501 .
[8] Zheng Jia-Jin, Zhang Gui-Lan, Guo Yang-Xue, Li Xiang-Ping, Chen Wen-Ju. All-optical switching and nonlinear optical properties of HBT in ethanol solution[J]. Chin. Phys., 2007, 16(4): 1047 -1051 .
[9] Liu Su-Ping, Gong Jian, Hao Fan-Hua, Hu Guang-Chun. Template identification technology of nuclear warheads and components[J]. Chin. Phys. B, 2008, 17(2): 363 -369 .
[10] Zhang Kai-Wang. Quantum diffusion in semi-infinite periodic and quasiperiodic systems[J]. Chin. Phys. B, 2008, 17(3): 1113 -1118 .