Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096806    DOI: 10.1088/1674-1056/ac1e22

Atomic and electronic structures of p-type dopants in 4H-SiC

Lingyan Lu(卢玲燕)1,†, Han Zhang(张涵)2,†, Xiaowei Wu(吴晓维)2, Jing Shi(石晶)1,‡, and Yi-Yang Sun(孙宜阳)2,§
1 Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
Abstract  Using hybrid density functional calculation, we study the atomic and electronic structures of p-type dopants, B, Al and Ga, in 4H-SiC. For B, depending on the growth condition, it can occupy both Si and C sites. In contrast, Al and Ga on the C sites exhibit too high formation energy to exist in a significant amount. In 4H-SiC, there exist two types of Si sites in wurtzite-like and zincblende-like local coordination, respectively. Our calculations suggest that the dopant atoms have negligible preference occupying the two sites. In neutral charge state, all the dopants exhibit significant distortions from the structure in the negatively charged state. For most cases, our calculations yield three distorted structures, in which the most stable one has the dopant atom displaced along its bond with one of the surrounding equatorial Si or C atoms, lowering the C3v symmetry to Cs symmetry (i.e., a mirror symmetry only). Among the three dopant elements, Al on Si sites exhibits overall the lowest formation energy and the shallowest acceptor level. Nevertheless, it is not a hydrogenic dopant with the acceptor level 0.12 eV above the valence band maximum based on calculation using a 400-atom supercell. Its corresponding defect state exhibits apparent localization along the [0001] direction, but it is relatively delocalized in the (0001) plane.
Keywords:  wide band gap semiconductors      p-type doping      SiC      density functional theory  
Received:  07 July 2021      Revised:  26 July 2021      Accepted manuscript online:  17 August 2021
PACS:  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Corresponding Authors:  Jing Shi, Yi-Yang Sun     E-mail:;

Cite this article: 

Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳) Atomic and electronic structures of p-type dopants in 4H-SiC 2021 Chin. Phys. B 30 096806

[1] Kimoto T and Cooper J A 2014 Fundamentals of Silicon Carbide Technology (Singapore: John Wiley & Sons)
[2] Gorai P, McKinney R W, Haegel N M, Zakutayev A and Stevanovic V 2019 Energy Environ. Sci. 12 3338
[3] Van Daal H J, Knippeneerg W F and Wasscher J D 1963 J. Phys. Chem. Solids 24 109
[4] Amano H, Kito M, Hiramatsu K and Akasaki I 1989 Jpn J. Appl. Phys. 28 L2112
[5] Kalish R 1999 Carbon 37 781
[6] Sridhara S G, Devaty R P and Choyke W J 1998 J. Appl. Phys. 84 2963
[7] Monemar B 1974 Phys. Rev. B 10 676
[8] Nakamura S, Kumagai H, Kimoto T and Matsunami H 2002 Appl. Phys. Lett. 80 3355
[9] Dmitriev V A, Irvine K G, Carter C H, Kuznetsov N I and Kalinina E V 1996 Appl. Phys. Lett. 68 229
[10] Qian X, Jiang P Q and Yang R G 2017 Mater. Today Phys. 3 70
[11] Kamatagi M D, Sankeshwar N S and Mulimani B G 2007 Diamond Related Mater. 16 98
[12] Pengelly R S, Wood S M, Milligan J W, Sheppard S T and Pribble W L 2012 IEEE Trans. Microw. Theory Techn. 60 1764
[13] Roschke M and Schwierz F 2001 IEEE Trans. Electron. Dev. 48 1442
[14] Trew R J 1997 Phys. Stat. Sol. (A) 162 409
[15] Lebedev A A 1999 Semiconductors 33 107
[16] Deák P, Aradi B, Gali A and Gerstmann U 2003 Phys. Stat. Sol. (B) 235 139
[17] Aradi B, Deák P, Son N T, Janzén E, Choyke W J and Devaty R P 2001 Appl. Phys. Lett. 79 2746
[18] Zhou P L, Shi R Q, He J F and Zheng S K 2013 Acta. Phys. Sin. 62 233101 (in Chinese)
[19] Miyata M, Hattori S and Hayafuji Y 2009 Jpn. J. Appl. Phys. 48 041301
[20] Petrenko T T and Petrenko T L 2016 Phys. Rev. B 93 165203
[21] Gerstmann U, Gali A, Deák P, Frauenheim T and Overhof H 2004 Mater. Sci. Forum 457-460 711
[22] Sun Y Y, Abtew T A, Zhang P and Zhang S B 2014 Phys. Rev. B 90 165301
[23] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Paier J, Marsman M, Hummer K, Kresse G, Gerber I C and Ángyán J G 2006 J. Chem. Phys. 124 154709
[26] Son N T, Chen W M, Kordina O, Konstantinov A O, Monemar B, Janzén E, Hofman D M, Volm D, Drechsler M and Meyer B K 1995 Appl. Phys. Lett. 66 1074
[27] Volm D, Meyer B K, Hofmann D M, Chen W M, Son N T, Persson C, Lindefelt U, Kordina O, Sörman E, Konstantinov A O, Monemar B and Janzén E 1996 Phys. Rev. B 53 15409
[28] Du M H and Zhang S B 2009 Phys. Rev. B 80 115217
[29] Wu X, Gao W, Chai J, Ming C, Chen M, Zeng H, Zhang P, Zhang S and Sun Y Y 2021 Sci. China Mater.
[30] Clark H K and Hoard J L 1943 J. Am. Chem. Soc. 65 2115
[31] Salvador J R, Bilc D, Mahanti S D and Kanatzidis M G 2003 Angew. Chem. Int. Ed. 42 1929
[32] Jeffrey G A and Wu V 1966 Acta Cryst 20 538
[33] Christenson S G, Xie W, Sun Y Y and Zhang S B 2015 J. Appl. Phys. 118 135708
[1] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[2] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[3] Serverless distributed learning for smart grid analytics
Gang Huang(黄刚), Chao Wu(吴超), Yifan Hu(胡一帆), and Chuangxin Guo(郭创新). Chin. Phys. B, 2021, 30(8): 088802.
[4] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[5] Magneto-transport properties of thin flakes of Weyl semiconductor tellurium
Nan Zhang(张南), Bin Cheng(程斌), Hui Li(李惠), Lin Li(李林), and Chang-Gan Zeng(曾长淦). Chin. Phys. B, 2021, 30(8): 087304.
[6] Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak
Jing-Chun Li(李景春), Jia-Qi Dong(董家齐), Xiao-Quan Ji(季小全), and You-Jun Hu(胡友俊). Chin. Phys. B, 2021, 30(7): 075203.
[7] Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(7): 077101.
[8] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[9] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[10] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[11] HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields
Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威). Chin. Phys. B, 2021, 30(7): 073201.
[12] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[13] Constraints on the kinetic energy of type-Ic supernova explosion from young PSR J1906+0746 in a double neutron star candidate
Yi-Yan Yang(杨佚沿), Cheng-Min Zhang(张承民), Jian-Wei Zhang(张见微), and De-Hua Wang (王德华). Chin. Phys. B, 2021, 30(6): 068703.
[14] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[15] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[1] M. Matsumoto, A. Morisako, S. Takei, Ma Yun-Gui, Yang Zheng. Effects of underlayer materials and substrate temperatures on the structural and magnetic properties of Nd2Fe14B films[J]. Chin. Phys., 2004, 13(11): 1969 -1974 .
[2] Wen Lei, Li Shun-Guang, Huang Guo-Song, Hu Li-Li, Jiang Zhong-Hong. Optical transitions and upconversion properties of Er3+-doped chloride tellurite glasses[J]. Chin. Phys., 2004, 13(2): 258 -263 .
[3] Yu Si-Min, Qiu Shui-Sheng, Peng Shi-Guo, Lin Qing-Hua, Ma Zai-Guang. Generation and synchronization of N-scroll chaotic and hyperchaotic attractors in fourth-order systems[J]. Chin. Phys., 2004, 13(3): 317 -328 .
[4] Luo Ying, Ma Ben-Kun, Duan Su-Qing, Zhao Xian-Geng, Wang Li-Min. Effects of a donor on the bond property of quantum-dot molecules[J]. Chin. Phys., 2004, 13(6): 942 -947 .
[5] Lin Xue-Chun, Kong Yu-Peng, Zhang Ying, Zhang Jie, Yao Ai-Yun, Bi Yong, Sun Zhi-Pei, Cui Da-Fu, Li Rui-Ning, Wu Ling-An, Xu Zu-Yan. Mid-infrared generation based on a periodically poled LiNbO3 optical parametric oscillator[J]. Chin. Phys., 2004, 13(7): 1042 -1045 .
[6] Yang Shu-Zheng, Jiang Qing-Quan, Li Hui-Ling. Quantum tunnelling radiation of Einstein--Maxwell--Dilaton--Axion black hole[J]. Chin. Phys., 2005, 14(12): 2411 -2414 .
[7] Tan Wen, Wang Yao-Nan, Duan Feng, Li Xiao-Hui. LMI-based output feedback fuzzy control of chaotic system with uncertainties[J]. Chin. Phys., 2006, 15(11): 2529 -2534 .
[8] Fu Shi-Liu, Yin Tao, Chai Fei. Synthesis and characterization of Ca2Sn1-xCexO4 with blue luminescence originating from Ce4+ charge transfer transition[J]. Chin. Phys., 2007, 16(10): 3129 -3133 .
[9] Jing Ji-Liang, Pan Qi-Yuan. Resonant frequencies of massless scalar field in rotating black-brane spacetime[J]. Chin. Phys. B, 2008, 17(6): 1985 -1989 .
[10] Tang Li. Quantum information procession with fermions based on charge detection[J]. Chin. Phys. B, 2009, 18(12): 5155 -5160 .