Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107505    DOI: 10.1088/1674-1056/ac1b94
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic excitations of diagonally coupled checkerboards

Tingting Yan(颜婷婷)1, Shangjian Jin(金尚健)1, Zijian Xiong(熊梓健)1,3, Jun Li(李军)1,2,†, and Dao-Xin Yao(姚道新)1,‡
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
2 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China;
3 Department of Physics, Chongqing University, Chongqing 401331, China
Abstract  By using quantum Monte Carlo based stochastic analytic continuation (QMC-SAC) and spin wave theory, we study magnetic excitations of Heisenberg models with diagonally coupled checkerboard structures. We consider three kinds of checkerboard models (DC 2×2, DC 3×3, and CDC 3×3) consisting nearest-neighbor strong J1 and weak J2 antiferromagnetic interactions. When the coupling ratio g=J2/J1 approaches 1, all three diagonal checkerboards have the same long-range antiferromagnetic Néel order at T=0. When g decreases, the quantum fluctuation can drive DC 2×2 model to quantum paramagnetic state, while DC 3×3 and CDC 3×3 models still have the long-range Néel order. By calculating the magnetic excitations at different coupling ratios, we find that the low-energy part of magnetic excitations calculated by QMC-SAC can be well explained by the spin wave theory. However, the high-energy parts even deep in the long-range antiferromagnetic phase are beyond the spin wave description. Compared to the g=1 uniform square lattice, the high-energy excitations are more rich in our models. Our study may also draw the attention to the high-energy exctitaions beyond the spin wave theory.
Keywords:  magnetic excitation      Heisenberg model      quantum Monte Carlo      spin wave  
Received:  12 July 2021      Revised:  30 July 2021      Accepted manuscript online:  07 August 2021
PACS:  75.30.Ds (Spin waves)  
  75.40.Gb (Dynamic properties?)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  02.70.Uu (Applications of Monte Carlo methods)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0306001 and 2017YFA0206203), the National Natural Science Foundation of China (Grant No. 11974432), GBABRF-2019A1515011337, and Leading Talent Program of Guangdong Special Projects.
Corresponding Authors:  Jun Li, Dao-Xin Yao     E-mail:  ljcj007@ysu.edu.cn;yaodaox@mail.sysu.edu.cn

Cite this article: 

Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新) Magnetic excitations of diagonally coupled checkerboards 2021 Chin. Phys. B 30 107505

[1] Manousakis E 1991 Rev. Mod. Phys. 63 1
[2] Barzykin V and Pines D 1995 Phys. Rev. B 52 13585
[3] Andersen B M and Hedegård P 2005 Phys. Rev. Lett. 95 037002
[4] Andersen B M, Hirschfeld P J, Kampf A P and Schmid M 2007 Phys. Rev. Lett. 99 147002
[5] Lee-Hone N R, Dodge J S and Broun D M 2017 Phys. Rev. B 96 024501
[6] Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003
[7] Zhao J, Huang Q, de la Cruz C, Li S, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L and Dai P 2008 Nat. Mater. 7 953
[8] de la Cruz C, Huang Q, Lynn J W, Li J, Ⅱ W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L and Dai P 2008 Nature 453 899
[9] Lumsden M D and Christianson A D 2010 J. Phys.: Condens. Matter 22 203203
[10] Dai P 2015 Rev. Mod. Phys. 87 855
[11] Wen J, Xu G, Gu G, Tranquada J M and Birgeneau R J 2011 Rep. Prog. Phys. 74 124503
[12] Máca F, Mašek J, Stelmakhovych O, Martí X, Reichlová H, Uhlířová K, Beran P, Wadley P, Novak V and Jungwirth T 2012 J. Magn. Magn. Mater. 324 1606
[13] Hu D, Lu X, Zhang W, Luo H, Li S, Wang P, Chen G, Han F, Banjara S R, Sapkota A, Kreyssig A, Goldman A I, Yamani Z, Niedermayer C, Skoulatos M, Georgii R, Keller T, Wang P, Yu W and Dai P 2015 Phys. Rev. Lett. 114 157002
[14] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[15] Manousakis E and Salvador R 1988 Phys. Rev. Lett. 60 840
[16] Singh R R P and Huse D A 1989 Phys. Rev. B 40 7247
[17] Greven M, Birgeneau R J, Endoh Y, Kastner M A, Keimer B, Matsuda M, Shirane G and Thurston T R 1994 Phys. Rev. Lett. 72 1096
[18] Wessel S, Jagannathan A and Haas S 2003 Phys. Rev. Lett. 90 177205
[19] Zhao B, Takahashi J and Sandvik A W 2020 Chin. Phys. B 29 057506
[20] Sun G, Ma N, Zhao B, Sandvik A W and Meng Z Y 2021 Chin. Phys. B 30 067505
[21] Liang S 1990 Phys. Rev. B 42 6555
[22] Read N and Sachdev S 1989 Phys. Rev. Lett. 62 1694
[23] Sandvik A W 2007 Phys. Rev. B 98 227202
[24] Anderson P W 1987 Science 235 1196
[25] Balents L 2010 Nature 464 199
[26] 2004 Phys. Rev. B 69 014424
[27] Campos I, Cotallo-Aban M, Martin-Mayor V, Perez-Gaviro S and Tarancon A 2006 Phys. Rev. Lett. 97 217204
[28] Guo H M 2016 Sci. China-Phys. Mech. Astron. 59 637401
[29] Guo J, Sun J, Zhu X, Li C A, Guo H and Feng S 2021 arXiv: 2010.05402
[30] Peng C, He R Q and Lu Z Y 2020 Phys. Rev. B 102 045110
[31] Coldea R, Hayden S M, Aeppli G, Perring T G, Frost C D, Mason T E, Cheong S W and Fisk Z 2001 Phys. Rev. Lett. 86 5377
[32] Headings N S, Hayden S M, Coldea R and Perring T G 2010 Phys. Rev. Lett. 105 247001
[33] Rønnow H M, McMorrow D F, Coldea R, Harrison A, Youngson I D, Perring T G, Aeppli G, Syljuåsen O, Lefmann K and Rischel C 2001 Phys. Rev. Lett. 87 037202
[34] Christensen N B, Rønnow H M, McMorrow D F, Harrison A, Perring T G, Enderle M, Coldea R, Regnault L P and Aeppli G 2007 Proc. Natl. Acad. Sci. USA 104 15264
[35] Dalla Piazza B, Mourigal M, Christensen N B, Nilsen G J, TregennaPiggott P, Perring T G, Enderle M, McMorrow D F, Ivanov D A and Rønnow H M 2015 Nat. Phys. 11 62
[36] Shao H, Qin Y Q, Capponi S, Chesi S, Meng Z Y and Sandvik A W 2017 Phys. Rev. X 7 041072
[37] Yu S L, Wang W, Dong Z Y, Yao Z J and Li J X 2018 Phys. Rev. B 98 134410
[38] Tennant D A, Broholm C, Reich D H, Nagler S E, Granroth G E, Barnes T, Damle K, Xu G, Chen Y and Sales B C 2003 Phys. Rev. B 67 054414
[39] Notbohm S, Ribeiro P, Lake B, Tennant D A, Schmidt K P, Uhrig G S, Hess C, Klingeler R, Behr G, Büchner B, Reehuis M, Bewley R I, Frost C D, Manuel P and Eccleston R S 2007 Phys. Rev. Lett. 98 027403
[40] Bera A K, Wu J, Yang W, Bewley R, Boehm M, Xu J, Bartkowiak M, Prokhnenko O, Klemke B, Islam A T M N, Law J M, Wang Z and Lake B 2020 Nat. Phys. 16 625
[41] Xu Y, Xiong Z, Wu H Q and Yao D X 2019 Phys. Rev. B 99 085112
[42] Hoffman J E, Hudson E W, Lang K M, Madhavan V, Eisaki H, Uchida S and Davis J C 2002 Science 295 466
[43] Hanaguri T, Lupien C, Kohsaka Y, Lee D H, Azuma M, Takano M, Takagi H and Davis J C 2004 Nature 430 1001
[44] Yao D X and Carlson E W 2008 Phys. Rev. B 77 024503
[45] Ran X X, Ma N and Yao D X 2019 Phys. Rev. B 99 174434
[46] Cheng J Q, Li J, Xiong Z, Wu H Q, Sandvik A W and Yao D X 2020 arxiV: 2011.02448
[47] Song Y, Yuan D, Lu X, Xu Z, Bourret-Courchesne E and Birgeneau R J 2019 Phys. Rev. Lett. 123 247205
[48] Góral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 88 170406
[49] Ölschläger M, Wirth G, Kock T and Hemmerich A 2012 Phys. Rev. Lett. 108 075302
[50] Sandvik A W 1997 Phys. Rev. B 56 11678
[51] Wenzel S, Bogacz L and Janke W 2008 Phys. Rev. Lett. 101 127202
[52] Jiang F J 2012 Phys. Rev. B 85 014414
[53] Ma N, Sun G Y, You Y Z, Xu C, Vishwanath A, Sandvik A W and Meng Z Y 2018 Phys. Rev. B 98 174421
[54] Lin H Q 1990 Phys. Rev. B 42 6561
[55] Jeckelmann E 2002 Phys. Rev. B 66 045114
[56] Verstraete F and Cirac J I 2010 Phys. Rev. Lett. 104 190405
[57] Sandvik A W 1998 Phys. Rev. B 57 10287
[58] Syljuåsen O F 2008 Phys. Rev. B 78 174429
[59] Sandvik A W 2016 Phys. Rev. E 94 063308
[60] Shu Y R, Dupont M, Yao D X, Capponi S and Sandvik A W 2018 Phys. Rev. B 97 104424
[61] Sandvik A W 2010 AIP Conf. Proc. 1297 135
[62] des Cloizeaux J and Pearson J J 1962 Phys. Rev. 128 2131
[63] Melcher R L 1973 Phys. Rev. Lett. 30 125
[64] Locher P 1990 Phys. Rev. B 41 2537
[65] Wang L, Beach K S D and Sandvik A W 2006 Phys. Rev. B 73 014431
[66] Syljuåsen O F 2006 Phys. Rev. B 73 245105
[67] Yao D X, Gustafsson J, Carlson E W and Sandvik A W 2010 Phys. Rev. B 82 172409
[68] Fritz L, Doretto R L, Wessel S, Wenzel S, Burdin S and Vojta M 2011 Phys. Rev. B 83 174416
[69] Yasuda S and Todo S 2013 Phys. Rev. E 88 061301
[70] Wallace D J and Zia R K P 1975 Phys. Rev. B 12 5340
[71] Toth S and Lake B 2015 J. Phys.: Condens. Matter 27 166002
[72] Canali C M and Wallin M 1993 Phys. Rev. B 48 3264
[73] Lorenzana J, Seibold G and Coldea R 2005 Phys. Rev. B 72 224511
[74] Igarashi J I and Nagao T 2005 Phys. Rev. B 72014403
[75] Syromyatnikov A V 2010 J. Phys.: Condens. Matter 22 216003
[1] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[2] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[3] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[4] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[5] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[6] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[7] Magnon bands in twisted bilayer honeycomb quantum magnets
Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平). Chin. Phys. B, 2021, 30(7): 077505.
[8] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[9] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[10] Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2
Tao Xie(谢涛), Chang Liu(刘畅), Tom Fennell, Uwe Stuhr, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2021, 30(12): 127402.
[11] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[12] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
[13] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[14] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[15] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
No Suggested Reading articles found!