Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 123403    DOI: 10.1088/1674-1056/ac1b8c
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)

Wen-Li Zhao(赵文丽)1, Rui-Shan Tan(谭瑞山)2, Xue-Cheng Cao(曹学成)1, Feng Gao(高峰)1,†, and Qing-Tian Meng(孟庆田)3,‡
1 School of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China;
2 Department of Science, Shandong Jianzhu University, Jinan 250101, China;
3 School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  Based on a new global potential energy surface of SiH2+(X2A1), the exact quantum dynamical calculation for the H(2S)+SiH+(X1Σ+)→H2+Si+ reaction has been carried out by using the Chebyshev wave packet method. The initial state specified (νi=0, ji=0) probabilities, integral cross sections (ICS) and thermal rate constants of the title reaction are calculated. All partial wave contributions up to J=90 are calculated in exact quantum calculation including the full Coriolis coupling (CC) effect. The dynamical behaviors of probabilities, ICSs and rate constants are found to be in accord with an exothermic reaction without potential barrier. By comparing the probabilities of CC with the corresponding centrifugal sudden (CS) approximation ones, it can be concluded that neglecting CC effect will decrease the collision time, increase the amplitude of oscillation and lead to overestimation or underestimation of the reaction probability. For ICSs and rate constants, it is found that the deviation of CC and CS ICSs is small in the most of collision energy range except for the range of 0 eV-0.05 eV, while the deviation of both rate constants is considerable in the temperature range of 16 K-1000 K.
Keywords:  Chebyshev wave packet method      reaction probability      integral cross section      rate constant  
Received:  17 June 2021      Revised:  26 July 2021      Accepted manuscript online:  07 August 2021
PACS:  34.50.Lf (Chemical reactions)  
  82.20.Db (Transition state theory and statistical theories of rate constants)  
  82.20.Pm (Rate constants, reaction cross sections, and activation energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674198 and 11804193), the Shandong Provincial Natural Science Foundation of China (Grant No. ZR2019PA012), and the First-class Discipline Construction Foundation of Shandong Agricultural University.
Corresponding Authors:  Feng Gao, Qing-Tian Meng     E-mail:  gaofeng@sdau.edu.cn;qtmeng@sdnu.edu.cn

Cite this article: 

Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田) Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1) 2021 Chin. Phys. B 30 123403

[1] Bender C F and Schaefer H F 1971 J. Mol. Spectrosc. 37 423
[2] Stoecklin T and Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446
[3] Warmbier R and Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285
[4] Li Y Q, Zhang P Y and Han K L 2015 J. Chem. Phys. 142 124302
[5] Sundaram P, Manivannan V and Padmanaban R 2017 Phys. Chem. Chem. Phys. 19 20172
[6] Guo J, Zhang A J, Zhou Y, Liu J Y, Jia J F and Wu H S 2017 Chem. Phys. Lett. 689 121
[7] Kasap S and Capper P 2017 Springer Handbook of Electronic and Photonic Materials (Heidelberg:Springer) pp. 573-576
[8] Zhang Y G, Dou G, Cui J and Yu Y 2018 J. Mol. Struct. 1165 318
[9] Gao F, Zhang L L, Zhao W L, Meng Q T and Song Y Z 2019 J. Chem. Phys. 150 224304
[10] Meijer A J H M and Goldfield E M 1999 J. Chem. Phys. 110 870
[11] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[12] Elkind J L and Armentrout P B 1984 J. Phys. Chem. 88 5454
[13] Curtis M C, Jackson P A, Sarre P J and Whitham C J 1985 Mol. Phys. 56 485
[14] Bauer C, Hirst D M, Hall D I, Sarre P J and Rosmus P J 1994 Chem. Sot. Faraday Trans. 90 517
[15] Vach H, Chaâbane N and Peslherbe G H 2002 Chem. Phys. Lett. 352 127
[16] Chaâbane N, Vach H and Cabarrocas P R I 2004 J. Phys. Chem. A 108 1818
[17] Zhang J Z H 1999 Theory and Application of Quantum Molecular Dynamics (World Scientific, Singapore) pp. 149-150
[18] Lin S Y and Guo H 2003 J. Chem. Phys. 119 11602
[19] Gao F, Wang X L, Zhao W L, Song Y Z and Meng Q T 2018 Eur. Phys. J. D 72 224
[20] Wang X L, Gao F, Gao S B, Zhang L L, Song Y Z and Meng Q T 2018 Chin. Phys. B 27 043104
[21] Zhao W L, Wang Y G, Zhang L L, Yue D G and Meng Q T 2020 Acta Phys. Sin. 69 083401 (in Chinese)
[22] Neuhauser D, Baer M, Judson R S and Kouri D J 1990 J. Chem. Phys. 93 312
[23] Zhai H C and Lin S Y 2015 Chem. Phys. 455 57
[24] Bowman J M 1991 J. Phys. Chem. 95 4960
[25] Gray S K, Goldfield, E M, Schatz G C and Balint-Kurti G G 1999 Phys. Chem. Chem. Phys. 1 1141
[26] Clary D C 1984 Mol. Phys. 53 3
[27] Halvick Ph, Stoecklin T, Larregaray P and Bonnet L 2007 Phys. Chem. Chem. Phys. 9 582
[28] Bovino S, Grassi T and Gianturco F A 2015 J. Phys. Chem. A 119 11973
[29] De Fazio D and Castillo J F 1999 Phys. Chem. Chem. Phys. 1 1165
[30] Lu R F, Wang Y H and Deng K M 2013 J. Comput. Chem. 34 1735
[1] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[2] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[3] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[4] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[5] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[6] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[7] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[8] Exploring the methane combustion reaction: A theoretical contribution
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2018, 27(2): 023401.
[9] State-to-state quantum dynamics of N(2D)+HD (v=0, j=0) reaction
Yong Zhang(张勇). Chin. Phys. B, 2016, 25(12): 123104.
[10] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[11] Theoretical study of stereodynamics for the D'+DS(ν = 0,j = 0)→D'D+S abstraction reaction
Guo Ya-Hui (郭雅慧), Zhang Feng-Yun (张凤昀), Ma Hong-Zhang (马红章). Chin. Phys. B, 2013, 22(5): 053402.
[12] Translational, vibrational, rotational enhancements and alignments of reactions H+ClF (v=0–5, j=0, 3, 6, 9) →HCl+F and HF+Cl,at Erel=0.5–20 kcal/mol
Victor Wei-Keh Chao(Wu). Chin. Phys. B, 2013, 22(10): 103101.
[13] Study of the H+HS reaction on a newly built potential energy surface using the quasi-classical trajectory method
Bai Meng-Meng (白孟孟), Ge Mei-Hua (葛美华), Yang Huan (杨欢), Zheng Yu-Jun (郑雨军). Chin. Phys. B, 2012, 21(12): 123401.
[14] The influence of isotope substitution of neon atom on the integral cross sections of rotational excitation in Ne–Na2 collisions
Zang Hua-Ping(臧华平), Li Wen-Feng(李文峰), Linghu Rong-Feng(令狐荣锋), Cheng Xin-Lu(程新路), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2011, 20(2): 020301.
[15] Differential, elastic integral and moment transfer cross sections for electron scattering from N2 at intermediate- and high-energies
Shi De-Heng (施德恒), Liu Yu-Fang (刘玉芳), Sun Jin-Feng (孙金锋), Zhu Zun-Lue (朱遵略), Yang Xiang-Dong (杨向东). Chin. Phys. B, 2005, 14(2): 331-335.
No Suggested Reading articles found!