Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104103    DOI: 10.1088/1674-1056/ac192f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Physical properties of relativistic electron beam during long-range propagation in space plasma environment

Bi-Xi Xue(薛碧曦)1,2, Jian-Hong Hao(郝建红)1,†, Qiang Zhao(赵强)2, Fang Zhang(张芳)2, Jie-Qing Fan(范杰清)1, and Zhi-Wei Dong(董志伟)2
1 School of Electrical and Electronic Engineering Department, North China Electric Power University, Beijing 102206, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Abstract  It is known that ion channel can effectively limit the radial expansion of an artificial electron beam during its long-range propagation in the space plasma environment. Most prior studies discussed the focusing characteristics of the beam in the ion channel, but the establishment process and transient properties of the ion channel itself, which also plays a crucial role during the propagation of the relativistic electron beam in the plasma environment, were commonly neglected. In this study, a series of two-dimensional (2D) particle-in-cell simulations is performed and an analytical model of ion channel oscillation is constructed according to the single-particle motion. The results showed that when the beam density is higher than the density of plasma environment, ion channel can be established and always continues to oscillate periodically over the entire propagation. Multiple factors, including the beam electron density, initial beam radius, and the plasma density can affect the oscillation properties of ion channel. Axial velocity of the beam oscillates synchronously with the ion channel and this phenomenon will finally develop into a two-stream instability which can seriously affect the effective transport for relativistic electron beam. Choosing appropriate beam parameters based on various plasma environments may contribute to the improvement of the stability of ion channel. Additionally, radial expansion of the beam can be limited by ion channel and a stable long-range propagation in terrestrial atmosphere may be achieved.
Keywords:  ion channel      space plasma environment      long-range propagation      particle-in-cell (PIC) simulation  
Received:  06 June 2021      Revised:  21 July 2021      Accepted manuscript online:  30 July 2021
PACS:  41.85.Ja (Particle beam transport)  
  41.75.Ht (Relativistic electron and positron beams)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
Fund: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant Nos. 61372050 and U1730247).
Corresponding Authors:  Jian-Hong Hao     E-mail:  jianhonghao@ncepu.edu.cn

Cite this article: 

Bi-Xi Xue(薛碧曦), Jian-Hong Hao(郝建红), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟) Physical properties of relativistic electron beam during long-range propagation in space plasma environment 2021 Chin. Phys. B 30 104103

[1] Sanchez E R, Powis A T, Kaganovich I D, Marshall R, Porazik P, Johnson J, Greklek-Mckeon M, Amin K S, Shaw D and Nicolls M 2019 Front. Astron. Space Sci. 6 071001
[2] Borovsky J E and Delzanno G L 2019 Front. Astron. Space Sci. 6 031001
[3] Prech L, Ruzhin Y Y, Dokukin V S, Nemecek Z and Safrankova J 2018 Front. Astron. Space Sci. 5 046001
[4] Delzanno G L, Borovsky J E, Thomsen M F, Gilchrist B E and Sanchez E 2018 J. Geophys. Res. Space Phys. 121 6769
[5] Hao J H, Xue B X, Zhao Q and Dong Z W 2021 IEEE Trans. Plasma Sci. 49 742
[6] Reeves G D, Delzanno G L, Fernandes P A, Fernandes K, Carlsten B E, Lewellen J W, Holloway M A, Nguyen D C, Pfaff R F, Farrell W M, Rowland D E, Samara M, Sanchez E R, Spanswick E, Donovan E F and Roytershteyn V 2020 Front. Astron. Space Sci. 7 023001
[7] Habash L 1998 The interaction of relativistic electron beams with the near-earth space environment, Ph. D. Thesis (Michigan: The University of Michigan)
[8] Xue B X, Hao J H, Zhao Q and Dong Z W 2020 IEEE Trans. Plasma Sci. 48 3871
[9] Neubert T, Gilchrist B, Wilderman S, Habash L and Wang J H 1996 Geophys. Res. Lett. 23 1009
[10] Neubert T and Gilchrist B E 2002 Adv. Space Res. 29 1385
[11] Sanford T W L 2002 Phys. Plasmas 2 2539
[12] Pal U N, Shukla P, Jadon A S and Kumar N 2017 IEEE Trans. Plasma Sci. 45 3195
[13] Buchanan and Lee H 1987 Phys. Fluids 30 221
[14] Swanekamp S B, Holloway J P, Kammash T and Gilgenbach R M 1992 Phys. Fluids 4 1332
[15] Lotov K V 1996 Phys. Plasmas 3 2753
[16] Jafari Bahman F and Maraghechi B 2013 Chin. Phys. B 22 074102
[17] Hasanbeigi A, Mehdian H and Jafari S 2011 Chin. Phys. B 20 094103
[18] Li H R, Tang C J and Wang S J 2010 Chin. Phys. B 19 124101
[19] Welch D R and Hughes T P 1993 Phys. Fluids B 5 339
[20] Chen K R, Katsouleas T C and Dawson J M 1990 IEEE Trans. Plasma Sci. 18 837
[21] Bennett W H 1934 Phys. Rev. 45 890
[22] Bennett W H 1955 Phys. Rev. 98 1584
[23] Whittum D H and Sessler A M 1990 Phys. Rev. Lett. 64 2511
[24] Xia Y X, Yang S P, Chen S Y and Tang C J 2020 Plasma Sci. Technol. 22 085001
[25] Xia Y X, Yang S P, Chen S Y and Tang C J 2021 Phys. Plasmas 28 013508
[26] Smith J R, Shokair I R, Struve K W, Schamiloglu E, Werner P W and Lipinski R J 1991 IEEE Trans. Plasma Sci. 19 850
[27] Chen X, Liu S G and Xie W K 2000 Acta Electron. Sin. 28 61
[28] Birdsall C and Langdon A 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill) pp. 314-330
[29] Hockney R W and Eastwood J W 1988 Computer Simulation Using Particles (New York: Adam Hilger) pp. 31-32
[30] Bilitza D, Altadill D, Zhang Y, Mertens C, Truhlik V, Richards P, Mckinnell L A and Reinisch B 2014 J. Space Weather Spac. 4 A07
[31] Humphries S 1990 Charged Particle Beams (New York: Wiley) pp. 396-402
[32] Miller R B 1982 An Introduction to the Physics of IntenseCharged Particle Beams (New York: Plenum Press) pp. 162-188
[33] Uhm H S 1984 J. Appl. Phys. 56 2041
[34] Chambers and Frank W 1979 Phys. Fluids 22 483
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[3] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[4] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[5] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[6] Damping of displaced chaotic light field in amplitude dissipation channel
Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义)†. Chin. Phys. B, 2020, 29(10): 100302.
[7] Biexponential distribution of open times of a toy channel model
Xiang Li(李翔), Jing-Jing Zhong(钟金金), Xue-Juan Gao(高学娟), Yu-Ning Wu(吴宇宁), Jian-Wei Shuai(帅建伟), Hong Qi(祁宏). Chin. Phys. B, 2017, 26(12): 128703.
[8] Transferring information through a mixed-five-spin chain channel
Hamid Arian Zad, Hossein Movahhedian. Chin. Phys. B, 2016, 25(8): 080307.
[9] Time evolution of negative binomial optical field in a diffusion channel
Liu Tang-Kun (刘堂昆), Wu Pan-Pan (吴盼盼), Shan Chuan-Jia (单传家), Liu Ji-Bing (刘继兵), Fan Hong-Yi (范洪义). Chin. Phys. B, 2015, 24(9): 090302.
[10] Erratum to “Coherence resonance in globally coupled neuronal networks with different neuron numbers”
Ning Wei-Lian (宁维莲), Zhang Zheng-Zhen (张争珍), Zeng Shang-You (曾上游), Luo Xiao-Shu (罗晓曙), Hu Jin-Lin (胡锦霖), Zeng Shao-Wen (曾绍稳), Qiu Yi (邱怡), Wu Hui-Si (吴慧思). Chin. Phys. B, 2013, 22(1): 018702.
[11] Coherence resonance in globally coupled neuronal networks with different neuron numbers
Ning Wei-Lian(宁维莲), Zhang Zheng-Zhen(张争珍), Zeng Shang-You(曾上游), Luo Xiao-Shu(罗晓曙), Hu Jin-Lin(胡锦霖), Zeng Shao-Wen(曾绍稳), Qiu Yi(邱怡), and Wu Hui-Si(吴慧思) . Chin. Phys. B, 2012, 21(2): 028702.
[12] Wave growth rate in a cylindrical metal waveguide with ion-channel guiding of a relativistic electron beam
Li Hai-Rong(李海容), Tang Chang-Jian(唐昌建), and Wang Shun-Jin(王顺金). Chin. Phys. B, 2010, 19(12): 124101.
[13] Control of reaction channels of CsI molecule by ultra-short laser pulse
Xiong De-Lin(熊德林),Wang Mei-Shan(王美山), Yang Chuan-Lu(杨传路), Tong Xiao-Fei(童小菲), and Ma Ning(马宁). Chin. Phys. B, 2010, 19(10): 103303.
[14] COHERENT INFORMATION ON THERMAL RADIATION NOISE CHANNEL: AN APPROACH OF INTEGRAL WITHIN ORDERED PRODUCT OF OPERATORS
Chen Xiao-yu (陈小余), Qiu Pei-liang (仇佩亮). Chin. Phys. B, 2001, 10(9): 779-782.
No Suggested Reading articles found!