Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 094209    DOI: 10.1088/1674-1056/ac192c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses

Fengzheng Zhu(朱风筝)1,2, Xiaoyu Liu(刘晓煜)1, Yue Guo(郭月)1, Ningyue Wang(王宁月)1, Liguang Jiao(焦利光)3,†, and Aihua Liu(刘爱华)1,‡
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China;
3 College of Physics, Jilin University, Changchun 130012, China
Abstract  We perform a theoretical study on dynamic interference in single photon ionization of ground state hydrogen atoms in the presence of a super-intense ultra-fast chirped laser pulse of different chirp types (equal-power and equal-FWHM laser pulses) by numerically solving the time-dependent Schrödinger equation in one dimension. We investigate the influences of peak intensity and chirp parameters on the instantaneous ionization rate and photoelectron yield, respectively. We also compare the photoelectron energy spectra for the ionization by the laser pulses with different chirp types. We find that the difference between the instantaneous ionization rates for the ionization of hydrogen atom driven by two different chirped laser pulses is originated from the difference in variation of vector potentials with time.
Keywords:  ultrafast laser field      single photon ionization      quantum interference  
Received:  16 June 2021      Revised:  19 July 2021      Accepted manuscript online:  30 July 2021
PACS:  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774131 and 91850114).
Corresponding Authors:  Liguang Jiao, Aihua Liu     E-mail:  lgjiao@jlu.edu.cn;aihualiu@jlu.edu.cn

Cite this article: 

Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华) Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses 2021 Chin. Phys. B 30 094209

[1] Gould R G 1959 The Laser, Light Amplification by Stimulated Emission of Radiation. The Ann Arbor Conference on Optical Pumping (Ann Arbor: the University of Michigan) p. 128
[2] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M and Chang Z 2017 Nat. Commun. 8 186
[3] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F and Wörner H J 2017 Opt. Express 25 27506
[4] Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J and Zhao Z 2020 Chin. Phys. Lett. 37 023201
[5] Song J, Meng X, Wang Z, Wang X, Tian W, Zhu J, Fang S, Teng H and We Z 2019 Chin. Phys. Lett. 36 124206
[6] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[7] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[8] Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R and Krausz F 2010 Nature 466 739
[9] Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, TRuchon, Auguste T, Diveki Z, Breger P, Maquet A, B Carré R T and Saliéres P 2010 Nat. Phys. 6 200
[10] Wu J, Zhang G T, Xia C L and Liu X S 2010 Phys. Rev. A 82 013411
[11] Nakajima T 2007 Phys. Rev. A 75 053409
[12] Xu L and Fu L B 2019 Chin. Phys. Lett. 36 043202
[13] Yuan J, Ma Y, Li R, Ma H, Zhang Y, Ye D, Shen Z, Yan T, Wang X, Weidemüller M and Jiang Y 2020 Chin. Phys. Lett. 37 053201
[14] Ciappina M F and Madsen L B 2008 Phys. Rev. A 77 023412
[15] Laulan S, Albert M A and Barmaki S 2017 Can. J. Phys. 95 900
[16] Strickland D and Mourou G 1985 Opt. Commun. 55 447
[17] The extreme light infrastructure (ELI) project [Online; accessed 28-July-2020]
[18] Eberly J H and Kulander K C 1993 Science 262 1229
[19] Demekhin P V and Cederbaum L S 2012 Phys. Rev. Lett. 108 253001
[20] Jiang W C and Burgdörfer J 2018 Opt. Express 26 19921
[21] Guo J, Guo F, Chen J and Yang Y 2018 Acta Phys. Sin. 67 073202
[22] Delone N B and Krainov V P 1999 Phys. Usp. 42 669
[23] Bian X B, Huismans Y, Smirnova O, Yuan K J, Vrakking M J J and Bandrauk A D 2011 Phys. Rev. A 84 043420
[24] Demekhin P V and Cederbaum L S 2013 Phys. Rev. A 88 043414
[25] Baghery M, Saalmann U and Rost J M 2017 Phys. Rev. Lett. 118 143202
[26] Müller A D, Kutscher E, Artemyev A N, Cederbaum L S and Demekhin P V 2018 Chem. Phys. 509 145
[27] Wang M X, Liang H, Xiao X R, Chen S G, Jiang W C and Peng L Y 2018 Phys. Rev. A 98 023412
[28] Wang N and Liu A 2019 Chin. Phys. B 28 083403
[29] Tong Y, Jiang W, Wu P and Peng L 2016 Chin. Phys. B 25 073202
[30] Barmaki S, Lanteigne P and Laulan S 2014 Phys. Rev. A 89 063406
[31] Liao Q and Thumm U 2014 Phys. Rev. Lett. 112 023602
[32] Laulan S, Ba H S and Barmaki S 2014 Can. J. Phys. 92 194
[33] Laulan S, Haché J, Ba H S and Barmaki S 2013 J. Mod. Phys. 4 20
[34] Yudin G L, Bandrauk A D and Corkum P B 2006 Phys. Rev. Lett. 96 063002
[35] Han J, Wang J, Qiao Y, Liu A H, Guo F M and Yang Y J 2019 Opt. Express 27 8768
[36] Carrera J J and Chu S I 2007 Phys. Rev. A 75 033807
[37] Saleh B E A and Teich M C 1991 Fundamentals of Photonics (New York: Wiley)
[38] He P L, Takemoto N and He F 2015 Phys. Rev. A 91 063413
[1] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[2] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[3] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[4] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[5] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[6] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[7] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[8] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[9] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[10] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[11] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[12] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[13] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
[14] Photodetachment of H- near a hard wall with arbitrary laser polarization direction
Azmat Iqbal, A. Afaq. Chin. Phys. B, 2015, 24(8): 083201.
[15] Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room
Qiu Yang, Li Hua, Zhang Shu-Lin, Wang Yong-Liang, Kong Xiang-Yan, Zhang Chao-Xiang, Zhang Yong-Sheng, Xu Xiao-Feng, Yang Kang, Xie Xiao-Ming. Chin. Phys. B, 2015, 24(7): 078501.
[1] CHEN ZONG-YUN, HUANG NIAN-NING, LI ZAI-GUANG. GENERAL SOLITON SOLUTIONS OF THE NLS+ EQUATION UNDER NON-VANISHING BOUNDARY CONDITION[J]. Acta Phys. Sin. (Overseas Edition), 1994, 3(1): 1 -17 .
[2] SHAO QI-YUN, PAN ZHENG-YING. MONTE CARLO SIMULATION OF THE ION BEAM ENHANCED DEPOSITION OF SILICON NITRIDE FILMS[J]. Acta Phys. Sin. (Overseas Edition), 1994, 3(9): 690 -696 .
[3] Shi Li-Hua, Cai Xin, Liu Yu-Yan, Huang Guang-Ming, Duan Chuan-Xi. Analysis of far-infrared laser magnetic resonance spectra of CH2Br at 447.3 and 671.1μm[J]. Chin. Phys., 2002, 11(11): 1170 -1174 .
[4] Long Yun-Ze, Chen Zhao-Jia, Liu Zhen-Xing, Zhang Zhi-Ming, Wan Mei-Xiang, Wang Nan-Lin. Composites of nanotubular polyaniline containing Fe3O4 nanoparticles[J]. Chin. Phys., 2003, 12(4): 433 -437 .
[5] Tam Hon-Wah, Zhang Yu-Feng, Guo Fu-Kui. A subalgebra of loop algebra ?2 and its applications[J]. Chin. Phys., 2004, 13(2): 132 -138 .
[6] Zhang Hao, Ma Xi-Kui, Yang Yu, Xu Cui-Dong. Generalized synchronization of hyperchaos and chaos using active backstepping design[J]. Chin. Phys., 2005, 14(1): 86 -94 .
[7] Mei Feng-Xiang, Xu Xue-Jun. Form invariances and Lutzky conserved quantities for Lagrange systems[J]. Chin. Phys., 2005, 14(3): 449 -451 .
[8] Niu Chun-Hui, Li Zhi-Yuan, Ye Jia-Sheng, Gu Bei-Yuan. Application of an approximate vectorial diffraction model to analysing diffractive micro-optical elements[J]. Chin. Phys., 2005, 14(6): 1136 -1141 .
[9] You Jun, Li Jia-Hua, Xie Xiao-Tao. Proposal for quantum entanglement of six photons[J]. Chin. Phys., 2005, 14(7): 1329 -1333 .
[10] Song Ning-Fang, Zhang Chun-Xi, Jin Jing. Phenomena of optic-bound effect on fibre optic gyro[J]. Chin. Phys., 2007, 16(3): 735 -739 .