Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120304    DOI: 10.1088/1674-1056/ac16d1
GENERAL Prev   Next  

Quantifying coherence with dynamical discord

Lian-Wu Yang(杨连武1,†) and Yun-Jie Xia(夏云杰)2
1 School of Physical Science and Intelligent Engineering, Jining University, Qufu 273155, China;
2 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China
Abstract  Quantum coherence and discord are two kinds of manifestations of nonclassicality. By calculating the coherence and discord in the specific bipartite quantum systems, we show quantitative connections between the coherence and the discord in the bipartite quantum systems created from local systems with the help of incoherent operations. We show that the coherence bounds the dynamical discord, and under particular conditions of the initial quantum states, the coherence of single systems is equal to the dynamical discord. We extend these results to the multipartite quantum systems.
Keywords:  quantum coherence      dynamical discord      relative entropy  
Received:  24 April 2021      Revised:  05 July 2021      Accepted manuscript online:  22 July 2021
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675115 and 11704221).
Corresponding Authors:  Lian-Wu Yang     E-mail:  wlyanglw@163.com

Cite this article: 

Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰) Quantifying coherence with dynamical discord 2021 Chin. Phys. B 30 120304

[1] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[2] Aberg J 2014 Phys. Rev. Lett. 113 150402
[3] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[4] Hu M L, Hu X, Wang J, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762 1
[5] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[6] Luo S L 2008 Phys. Rev. A 77 022301
[7] Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109
[8] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[9] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[10] Dakic B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner C and Walthe P 2012 Nat. Phys. 8 666
[11] Gu M, Chrzanowski H M, Assad S M, Symul T, Modi K, Ralph T C, Vedral V and Lam P K 2012 Nat. Phys. 8 671
[12] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[13] Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922
[14] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[15] Hu M L and Fan H 2017 Phys. Rev. A 95 052106
[16] Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329
[17] Piani M, Gharibian S, Adesso G, Calsamiglia J, Horodecki, P and Winter, A 2011 Phys. Rev. Lett. 106 220403
[18] Gharibian S, Pian, M, Adesso G, Calsamiglia J and Horodecki P 2011 Int. J. Quantum. Inform. 09 1701
[19] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[20] Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
[21] Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402
[22] Killoran N, Steinhoff F E and Plenio M B 2016 Phys. Rev. Lett. 116 080402
[23] Xi Y, Zhang T, Zheng Z J, Li X and Fei S M 2019 Phys. Rev. A 100 022310
[24] Young J D and Auyuanet1 A 2020 Quantum Inf. Process. 19 398
[25] Feldman V, Maziero J and Auyuanet A 2017 Quantum Inf. Process. 16 128
[26] Yang L W and Xia Y J 2017 Chin. Phys. B 26 080302
[27] Wu K D, Hou Z, Zhong H S, Yuan Y, Xiang G Y, Li C F and Guo G C 2017 Optica 4 454
[28] Wu K D, Hou Z, Zhao Y Y, Xiang G Y, Li C F, Guo G C, Ma J, He Q Y, Thompson J and Gu M 2018 Phys. Rev. Lett. 121 050401
[29] Qiao L F, Streltsov A, Gao J, Rana S, Ren R J, Jiao Z Q, Hu C Q, Xu X Y, Wang C Y, Tang H, Yang A L, Ma Z H, Lewenstein M and Jin X M 2018 Phys. Rev. A 98 052351
[30] Wang W, Han J, Yadin B, Ma Y, Ma J, Cai W, Xu Y, Hu L, Wang H, SongY P, Gu M and Sun L 2019 Phys. Rev. Lett. 123 220501
[31] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[32] Horodecki M, Horodecki P and Oppenheim J 2003 Phys. Rev. A 67 062104
[33] Gour G and Spekkens R W 2008 New J. Phys. 10 033023
[34] Brandão F G, Horodecki M, Oppenheim J, Renes J M and Spekkens R W 2013 Phys. Rev. Lett. 111 250404
[35] Grudka A, Horodecki K, Horodecki M, Horodecki P, Horodecki R, Joshi P, Kłobus W and Wójcik A 2014 Phys. Rev. Lett. 112 120401
[36] Theurer T, Satyajit S and Plenio M B 2020 Phys. Rev. Lett. 125 130401
[37] Gour G, Marvian I and Spekkens R W 2009 Phys. Rev. A 80 012307
[38] Brandão F G and Gour G 2015 Phys. Rev. Lett. 115 070503
[39] Berta M and Majenz C 2018 Phys. Rev. Lett. 121 190503
[40] Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
[41] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[42] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[43] Horodecki R and Horodecki M 1996 Phys. Rev. A. 54 1838
[44] Werner R F 1989 Phys. Rev. A. 40 4277
[45] Fedrizzi A 2013 Phys. Rev. Lett. 111 230504
[46] Adesso G, Ambrosio V, Nagali E, Piani M and Sciarrino F 2014 Phys. Rev. Lett. 112 140501
[47] Kay A 2012 Phys. Rev. Lett. 109 080503
[48] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[49] Dakić B, Vedral V and Brukner Č 2010 Phys. Rev. Lett. 105 190502
[50] Ren L H, Gao M, Ren J, Wang Z D and Bai Y K 2020 arXiv: 2004.03995v2
[51] Rains E 1999 Phys. Rev. A 60 179
[52] Szalay S 2015 Phys. Rev. A 92 042329
[1] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[2] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[3] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[4] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[5] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[6] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[7] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[8] Quantifying quantum non-Markovianity via max-relative entropy
Yu Luo(罗宇), Yongming Li(李永明). Chin. Phys. B, 2019, 28(4): 040301.
[9] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[10] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[11] Estimation of photon counting statistics with imperfect detectors
Xiao-Chuan Han(韩晓川), Dong-Wei Zhuang(庄东炜), Yu-Xuan Li(李雨轩), Jun-Feng Song(宋俊峰), Yong-Sheng Zhang(张永生). Chin. Phys. B, 2018, 27(7): 074208.
[12] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[13] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[14] The heat and work of quantum thermodynamic processes with quantum coherence
Shanhe Su(苏山河), Jinfu Chen(陈劲夫), Yuhan Ma(马宇翰), Jincan Chen(陈金灿), Changpu Sun(孙昌璞). Chin. Phys. B, 2018, 27(6): 060502.
[15] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
No Suggested Reading articles found!