Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 116105    DOI: 10.1088/1674-1056/ac16ce
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Optically-controlled resistive switching effectsof CdS nanowire memtransistor

Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔)†,‡, Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜)§
School of Science, Wuhan University of Technology, Wuhan 430070, China
Abstract  Since it was proposed, memtransistors have been a leading candidate with powerful capabilities in the field of neural morphological networks. A memtransistor is an emerging structure combining the concepts of a memristor and a field-effect transistor with low-dimensional materials, so that both optical excitation and electrical stimuli can be used to modulate the memristive characteristics, which make it a promising multi-terminal hybrid device for synaptic structures. In this paper, a single CdS nanowire memtransistor has been constructed by the micromechanical exfoliation and alignment lithography methods. It is found that the CdS memtransistor has good non-volatile bipolar memristive characteristics, and the corresponding switching ratio is as high as 106 in the dark. While under illumination, the behavior of the CdS memtransistor is similar to that of a transistor or a memristor depending on the incident wavelengths, and the memristive switching ratio varies in the range of 10 to 105 with the increase of the incident wavelength in the visible light range. In addition, the optical power is also found to affect the memristive characteristics of the device. All of these can be attributed to the modulation of the potential barrier by abundant surface states of nanowires and the illumination influences on the carrier concentrations in nanowires.
Keywords:  CdS      nanowire      memtransistors      optically-controlled      resistive switching  
Received:  19 May 2021      Revised:  16 July 2021      Accepted manuscript online:  22 July 2021
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  85.60.-q (Optoelectronic devices)  
  87.19.lv (Learning and memory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51702245) and the Fundamental Research Funds for the Central Universities, China (Grant No. WUT2020IB010).
Corresponding Authors:  Feng-Xiang Chen, Li-Sheng Wang     E-mail:  phonixchen79@whut.edu.cn;wang_lesson@whut.edu.cn

Cite this article: 

Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜) Optically-controlled resistive switching effectsof CdS nanowire memtransistor 2021 Chin. Phys. B 30 116105

[1] Chua L 1971 IEEE Trans. Circuit Theor. 18 507
[2] Strukov D, Snider G, Stewart D R and Williams R S 2008 Nature 453 80
[3] Yang J J, Pickett M D, Li, Ohlberg D A A, Strewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429
[4] Kang C F, Kuo W C, Bao W Z, Ho C H, Huang C W, Wu W W, Chu Y H, Juang J Y, Tseng S H, Hu L B and He J H 2015 Nano Energy 13 283
[5] Chiu C H, Huang C W, Hsieh Y H, Chen J Y, Chang C F, Chu Y H and Wu W W 2017 Nano Energy 34 103
[6] Borghetti, Snider G, Kuekes P, Yang J J, Strewart D R and Williams R S 2010 Nature 464 873
[7] Zhao Q, Xie Z, Peng P, Wang K, Wang H, Li X, Wang H, Chen J, Zhang H and Yan X 2020 Mate. Horizon 7 1495
[8] Sangwan V, Lee H, Bergeron, Balla I, Beck M E, Chen K and Hersam M C 2018 Nature 554 500
[9] Zhong S 2019 Comput. Mater. Con. 60 465
[10] Lin H, Wang C, Hong Q and Sun Y 2020 IEEE Trans. Circuits Syst. Ⅱ: Exp. Briefs 67 3472
[11] Yin, Song, Sun Y, Qiao L, Wang B, Sun Y, Liu K, Pan F and Zhang X 2019 ACS App. Mater. Interfaces 11 43344
[12] Cheiwchanchamnangij and Lambrecht W R 2012 Phy. Rev. B 85 205302
[13] Yang Y, Du, Xue Q, Wei X, Yang Z, Xu C, Lin D, Jie W and Hao J 2019 Nano Energy 57 566
[14] Zhou G, Sun B, Yao Y, Zhang H, Zhou A, Alameh K, Ding B and Song Q 2016 Appl. Phys. Lett. 109 143904
[15] Li J P, Ma D W, Cao H T, Zhu L Q, Li J, Li, K, Liang L Y, Zhang H L, Gao J H and Zhuge F 2017 Mater. Sci. Eng. R Rep. 35 592
[16] Zhang W, Li M, Wei Q, Cao L, Yang Z and Qiao S 2008 Acta. Phys. Sin. 57 5887 (in Chinese)
[17] Cheng B, Xiong L, Cai Q, Shi H, Zhao J, Su X, Xiao Y and Lei S 2016 ACS Appl. Mater. Interface 8 34648
[18] Liang K D, Huang C H, Lai C C, Huang J S, Tsai H W, Wang Y C, Shih Y C, Chang M T, Lo S C and Chueh Y L 2014 ACS Appl. Mater. Interface 6 16537
[19] Liu P, Lin C, Manekkathodi and Chen L 2015 Nano Energy 15 362
[20] Wang P, Tang J, Kang Y, Fang X, Fang D, Wang D, Lin F, Wang X and Wei Z 2019 Acta. Phys. Sin. 68 087803 (in Chinese)
[21] Zhang L 2017 Preparation and photoelectric properties of CDs one dimensional nanostructures (MS Dissertation) (Nanchang: Nanchang University) (in Chinese)
[22] Zhang, Zhang F, Wang, Wang L, Wang F, Lin Q, Shen H and Li L S 2019 Opt. Express 27 7935
[23] Wang F, Wang, Cheng K and Zou B 2008 Chin. Phy. B 17 3103
[24] Li L, Yang, Zhang X, Wang L, Jiang Z, Lin Q, Wang C, Han F and Peng N 2014 Microelectron Eng 126 27
[25] Xi Y, Hu, Zheng C, Zhang H, Yang R and Tian Y 2010 Mater. Res. Bul. 45 1476
[26] Li F, Luo L, Yang, Wu D, Xie C, Nie B, Jie J, Wu C, Wang L and Yu S 2013 Adv. Energy Mate. 3 579
[27] Khan M S and Srivastava A 2019 Semiconductors 53 1759
[28] Jin W F and Hu L D 2019 Nanomaterial 9 1359
[29] Marmon J K, Rai S C, Wang, Zhou W and Zhang Y 2016 Front. Phys. 4 8
[30] Xue W, Ci W, Xu X and Liu G 2020 Chin. Phy. B 29 048401
[31] Hong Z, Zhao, Li, Cheng B, Xiao Y and Lei S 2019 Nanoscale 11 3360
[32] Maity R, Kundoo S and Chattopadhyay K K 2006 Mate. Manuf. Process. 21 644
[33] Teng F, Hu K, Ouyang W and Fang X 2018 Adv. Mater. 30 1706262
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[6] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[9] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[10] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[11] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[12] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[13] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[14] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[15] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
No Suggested Reading articles found!