Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 125202    DOI: 10.1088/1674-1056/ac16cd
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Landau damping of electrons with bouncing motion in a radio-frequency plasma

Jun Tao(陶军)1,2, Nong Xiang(项农)1,†, Yemin Hu(胡业民)1,‡, and Yueheng Huang(黄跃恒)3,4
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, China;
4 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  One-dimensional particle simulations have been conducted to study the interaction between a radio-frequency electrostatic wave and electrons with bouncing motion. It is shown that bounce resonance heating can occur at the first few harmonics of the bounce frequency (nωb,n=1,2,3,...). In the parameter regimes in which bounce resonance overlaps with Landau resonance, the higher harmonic bounce resonance may accelerate electrons at the velocity much lower than the wave phase velocity to Landau resonance region, enhancing Landau damping of the wave. Meanwhile, Landau resonance can increase the number of electrons in the lower harmonic bounce resonance region. Thus electrons can be efficiently heated. The result might be applicable for collisionless electron heating in low-temperature plasma discharges.
Keywords:  first few harmonics      bounce resonance      Landau resonance      resonance overlaps  
Received:  14 May 2021      Revised:  02 July 2021      Accepted manuscript online:  22 July 2021
PACS:  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.40.-w (Plasma interactions (nonlaser))  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0300406) and the National Natural Science Foundation of China (Grant Nos. 11975272, 12075276, 11805133, 11705236, and 11375234).
Corresponding Authors:  Nong Xiang, Yemin Hu     E-mail:  xiangn@ipp.ac.cn;yeminhu@ipp.ac.cn

Cite this article: 

Jun Tao(陶军), Nong Xiang(项农), Yemin Hu(胡业民), and Yueheng Huang(黄跃恒) Landau damping of electrons with bouncing motion in a radio-frequency plasma 2021 Chin. Phys. B 30 125202

[1] Piejak R B, Godyak V A and Alexandrovich B M 1992 Plasma Sources Sci. Technol. 1 179
[2] Raizer Y P, Shneider M N and Yatsenko N A 1995 Radio Frequency Capacitive Discharges (Boca Raton:CRC Press)
[3] Vahedi V, Lieberman M A, Dipeso G, Rognlien T D and Hewett D 1995 J. Appl. Phys. 78 1446
[4] Godyak V A, Piejak R B, Alexandrovich B M and Kolobov V I 1998 Phys. Rev. Lett. 80 3264
[5] You S J, Chung C W and Chang H Y 2005 Appl. Phys. Lett. 87 041501
[6] Sun A, Becker M M and Loffhagen D 2016 Comput. Phys. Comm. 206 35
[7] Fu Y Y, Zheng B C, Wen D Q, Zhang P, Fan Q H and Verboncoeur J P 2020 Appl. Phys. Lett. 117 204101
[8] Vass M, Wilczek S, Lafleur T, Brinkmann R P, Donko Z and Schulze J 2020 Plasma Sources Sci. Technol. 29 085014
[9] Hopwood J, Guarnieri C R, Whitehair S J and Cuomo J J 1993 J. Vac. Sci. Technol. A 11 147
[10] Hopwood J, Guarnieri C R, Whitehair S J and Cuomo J J 1993 J. Vac. Sci. Technol. A 11 152
[11] Turner M M 1993 Phys. Rev. Lett. 71 1844
[12] Barnes M S, Forster J C and Keller J H 1993 Appl. Phys. lett. 62 2622
[13] Weibel E S 1967 Phys. Fluids 10 741
[14] Blevin H A, Reynolds J A and Thonemann P C 1970 Phys. Fluids 13 1259
[15] Godyak V A and Kolobov V I 1998 Phys. Rev. Lett. 81 369
[16] Turner M M 1996 Plasma Sources Sci. Technol. 5 159
[17] Turner M M 2009 J. Phys. D:Appl. Phys. 42 194008
[18] Shaing K C and Aydemir A Y 1997 Phys. Plasmas 4 3163
[19] Yoon N S, Kim S S, Chang C S and Choi D I 1996 Phys. Rev. E 54 757
[20] Kaganovich I D, Kolobov V I and Tsendin L D 1996 Appl. Phys. Lett. 69 3818
[21] Aliev Y M, Kaganovich I D and Schlüter H 1997 Phys. Plasmas 4 2413
[22] Chung C W, Kim S S, Seo S H, Chang H Y and Yoon N S 2000 J. Appl. Phys. 88 1181
[23] Chung C W, You K I, Seo S H, Kim S S and Chang H Y 2001 Phys. Plasmas 8 2992
[24] Kaganovich I D, Polomarov O V and Theodosiou C E 2004 Phys. Plasmas 11 2399
[25] Angus J R, Krasheninnikov S I and Smolyakov A I 2010 Phys. Plasmas 17 102115
[26] Shoucri M, Matte J P and Côté A 2003 J. Phys. D:Appl. Phys. 36 2083
[27] Park G Y, You S J, Iza F and Lee J K 2007 Phys. Rev. Lett. 98 085003
[28] Park G Y and Lee J K 2008 J. Phys. D:Appl. Phys. 41 022004
[29] Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q and Wang Y N 2011 Phys. Rev. Lett. 107 055002
[30] Gu S, Kang H J, Kwon D C, Kim Y S, Chang Y M and Chuang C W 2016 Phys. Plasmas 23 063506
[31] Xu L, Cheng L, Funk M, Ranjan A, Hummel M, Bravenec R, Sundararajan R, Economou D J and Donnelly V M 2008 Appl. Phys. lett. 93 261502
[32] Koepke M, Ellis R F, Majeski R P and McCarrick M J 1986 Phys. Rev. Lett. 56 1256
[33] Hojo H and Hatori T 1993 J. Phys. Soc. Jpn 62 2212
[34] Zhang H s and Lin Z 2010 Phys. Plasmas 17 072502
[35] Elfimov A G, Galvao R M O, Sgalla R J F and Smolyakov A I 2012 39th EPS Conference on Plasma Physics, 2-6 July 2012, Stcckholm, Sweden
[36] Fu Y Y, Zheng B C, Wen D Q, Zhang P, Fan Q H and Verboncoeur J P 2020 Plasma Sources Sci. Technol. 29 09LT01
[37] Giruzzi G, Artaud J F, Dumont R J, Imbeaux F, Bibet P, Bergerby G, Bouquey F, Clary J, Darbot C, Ekedahl A, Hoang G T, Lennholm M, Maget P, Magne R, Segui J L, Bruschi A and Granucci G 2004 Phys. Rev. Lett. 93 255002
[38] Yang Y L, Xiang N and Hu Y M 2017 Phys. Plasmas 24 082503
[39] Zhai X M, Chen J L, Xiang N, Bonoli P T and Shiraiwa S 2019 Phys. Plasmas 26 052509
[40] Anderegg F, Affolter M, Kabantsev A A, Dubin D H E, Ashourvan A and Driscoll C F 2016 Phys. Plasmas 23 055706
[41] Chen L J, Maldonado A, Bortnik J, Thorne M, Li J X, Dai L and Zhan X Y 2015 J. Geophys. Res. 120 6514
[42] Oneil T M 1965 Phys. Plasmas 8 2255
[1] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[2] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[3] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[4] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[5] Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma
Wen-Chong Ouyang(欧阳文冲), Qi Liu(刘琦), Tao Jin(金涛), and Zheng-Wei Wu(吴征威). Chin. Phys. B, 2021, 30(9): 095203.
[6] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[7] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[8] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[9] Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
Yi-Nan Wang(王一男), Shuai-Xing Li(李帅星), Yue Liu(刘悦), Li Wang(王莉). Chin. Phys. B, 2019, 28(2): 025202.
[10] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[11] Effects of gas pressure on plasma characteristics in dual frequency argon capacitive glow discharges at low pressure by a self-consistent fluid model
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2017, 26(12): 125201.
[12] Modulation of absorption manner in helicon discharges by changing profile of low axial magnetic field
Gao Zhao(赵高), Yu Wang(王宇), Chen Niu(牛晨), Zhong-Wei Liu(刘忠伟), Jiting Ouyang(欧阳吉庭), Qiang Chen(陈强). Chin. Phys. B, 2017, 26(10): 105201.
[13] Fluid simulation of the pulsed bias effect on inductively coupled nitrogen discharges for low-voltage plasma immersion ion implantation
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Xue-Chun Li(李雪春), You-Nian Wang(王友年). Chin. Phys. B, 2017, 26(1): 015201.
[14] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[15] Influence of dielectric materials on uniformity of large-area capacitively coupled plasmas for N2/Ar discharges
Ying-Shuang Liang(梁英爽), Yu-Ru Zhang(张钰如), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(10): 105206.
No Suggested Reading articles found!